15 Frebruary 2021

Architectural Railing Division C.R.Laurence Co., Inc. 2503 E Vernon Ave. Los Angeles, CA 90058

SUBJ: ARS – ALUMINUM RAILING, PICKET, INFILL PANEL AND CABLE SYSTEMS SERIES 100, 200, 300, 350 AND 400 SERIES SYSTEMS

The ARS Aluminum Railing System utilizes aluminum extrusions to construct building guards and rails for decks, balconies, stairs, fences and similar locations. The system is intended for interior and exterior weather exposed applications and is suitable for use in all natural environments. The ARS may be used for residential, commercial and industrial applications. The ARS is an engineered system designed for the following criteria:

The design loading conditions are: On Top Rail: Concentrated load = 200 lbs any direction, any location Uniform load = 50 plf, perpendicular to rail On In-fill Panels: Concentrated load = 50# on one sf. Distributed load = 25 psf on area of in-fill, including spaces Wind load = To be determined based on infill Refer to IBC Section 1607.8.1

The ARS system will meet all applicable requirements of the 2006, 2009, 2012, 2015 and 2018 International Building Codes and International Residential Codes, 2010, 2013 and 2016 California Building and Residential Codes, Florida Building Code and other state codes adopting these versions of the IBC and IRC. Aluminum components are designed per 2015 Aluminum Design Manual unless noted otherwise herein. Stainless steel components are designed in accordance with SEI/ASCE 8-02 *Specification for the Design of Cold-Formed Stainless Steel Structural Members* or AISC Design Guide 27 *Structural Stainless Steel* as applicable. Wood components and anchorage to wood are designed in accordance with the *National Design Specification for Wood Construction*. The ARS system meets the requirements of ASTM E 985-00 *Standard Specification for Permanent Metal Railing Systems and Rails for Buildings* and ICC AC273 *Acceptance Criteria for Handrails and Guards*. The Specifier/project proponent is responsible for verifying that an installation complies with these recommendations and applicable codes for the specific project conditions and installation parameters. This report may be used in support of project specific evaluations but must not be used in place of a project specific review.

TABLE OF CONTENTS

Topic	<u>Pages</u>
Signature Page	3
Load Cases	4
Posts	5 - 40
Basic Performance Criteria	5
Detailed Criteria	6 - 16
Calculations	17 - 40
Post Anchorage	41 - 133
Basic Performance Criteria	41 - 43
Detailed Criteria	44 - 109
Calculations	110 - 133
Top Rails	134 - 196
Performance Criteria	134 - 135
Calculations	136 - 196
Mid/Bottom Rails	197 - 214
Infill	215 - 232
Pickets	215 - 222
Cable	223 - 227
Solid Cast	228 - 229
Glass	230 - 235
Design Aids	236 - 276

LOAD CASES:

Picket rail Dead load = 5 plf for 42" rail height or less.

Loading: Horizontal load to top rail from in-fill: 25 psf*H/2 Post moments $M_i = 25 \text{ psf*H/2*S*H}=$ = (25/2)*S*H²

For top rail loads: $M_c = 200\#*H$ $M_u = 50plf*S*H$

For wind load surface area: Pickets 3/4" wide by 4" on center Top rail = 3" maximum Post = 2.375" Area for typical 4' section by 42" high: 42"*2.375"+3"*48"+1.7"*45.625" $+0.75*36*11 = 618.3 in^2$ % surface/area = 618.3/(48"*42") = 30.67%Wind load for 25 psf equivalent load = 25/0.3067 = 81.5 psf

NOTES ON ASTM E 985-00: The loads given in ASTM E985-00

section 7 are test loads not allowable or

service loads. The greatest test load of 365# concentrated load is less than the 500# ultimate load to which the 200# concentrated design live load in these calculations equates.

Compliance with ASTM E 985-00 while not directly demonstrated by testing is inferred from these calculations since all component strengths and applicable deflections are demonstrated as adequate to meet all testing criteria.

The test loads listed in ASTM E 985-00 do not meet the test load requirements of IBC 1709 or ICC AC273 *Acceptance Criteria For Handrails and Guards*. The engineering herein demonstrates the system has adequate strength to meet the test loads in IBC 1709 and AC273.

POSTS

All ARS posts are extruded 6061-T6 aluminum or 6005A-T61. First, basic performance criteria for each post are listed below. Then, more specific performance criteria is shown with the supporting calculations on the following pages. Lastly, detailed sectional properties and moment strength calculations are shown for each post in accordance with the 2015 or 2020 ADM.

Basic Performance Criteria:

4 screw 2-3/8" square post

Allowable post moment, $M_{a,x} = 17,100$ "# Second moment of area, $I_x = 0.871$ in⁴ Handles top rail live loading at 60" tall with 66" post spacing or 54" tall with 72" post spacing.

6 screw 2-3/8" square post

Allowable post moment, $M_{a,x} = 19,500$ "# Second moment of area, $I_x = 0.997$ in⁴ Handles top rail live loading at 60" tall with 72" post spacing.

Heavy 2-3/8" square post

Allowable post moment, $M_{a,x} = 26,200$ "# Second moment of area, $I_x = 1.264$ in⁴ Handles top rail live loading at 60" tall with 72" post spacing.

135° corner post

Does not limit performance criteria below any of the 2-3/8" square posts. Note that the 135° post connection to the baseplate will control the allowable spacing when the six screw posts are used as the intermediate posts.

4" square post

Allowable post moment, $M_{a,x} = 49,500$ "# Second moment of area, $I_x = 5.48in^4$ Handles top rail live loading at 60" tall with 72" post spacing.

Trim Line post

Allowable post moment, $M_{a,x} = 10,400$ "# Second moment of area, $I_x = 0.524$ in⁴ Handles top rail live loading at 42" tall with 59" post spacing.

CR LAURENCE ALUMINUM RAIL SYSTEM

Guard Rail Post Design

System: ARS Post: 4 screw post

Post Properties:

E (psi)	10100000
l (in^4)	0.871
Ma (in-lbs)	17100
Δa	H/12

Load Cases:

200# concentrated load at top of post		
M = 200#*H	1	
Hmax = Ma,	/200# <(∆a*3L	EI/200#)^(1/3)
Hmax 85.5		
∆ at H=42"	0.56145775	

50plf uniform load along top rail

M=50plf/12*TW*HTWmax = Ma/(H*50plf/12) < $\Delta a*3El/(H^3*50plf/12)$

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
36	72
42	72
45	72
48	72
60	68.4
72	57
84	48.85714286
96	42.75

Detailed calculations for this post are on pages 17 - 19

Note on shear in posts: As shear loads carried on the web elements and the flange elements provide the primary bending resistance the interaction of shear and bending need not be checked on any of the posts in accordance with ADM H.3.1

 $M=P/144*TW*H^2/2$ TWmax = 2*Ma/(H²*P/144) < $\Delta a*3EI/(H^3*P/144*H/2)$)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Max Spacing (in)
	36	72
	42	72
	45	72
	48	72
	60	54.72
	72	38
	84	<36"
	96	<36"

P=	50psf	
Post He	ight (in)	Max Spacing (in)
	36	72
	42	55.83673469
	45	48.64
	48	42.75
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ight (in)	Max Spacing (in)
	36	50.66666667
	42	37.2244898
	45	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

2.3760'

Guaran	an rost Design	(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1111111
System: Post:	ARS 6 screw post	S° (
Post Prop	erties:		
E (psi)	10100000	0.1000"	
I (in^4)	0.997	0.1000	
Ma (in-lbs)	19500		
Δa	H/12	0.2130"	1.9500
Load Case	es:		
200# conce	ntrated load at top of post	r a	010
M = 200#*	^s H	S.M.	Son M

Detailed calculations for this post are on pages 20 - 25

80.130

50plf uniform load along top rail

>96"

Hmax

∆ at H=42"

 $Hmax = Ma/200\# < (\Delta a^{*}3EI/200\#)^{(1/3)}$

0.49050121

M=50plf/12*TW*H TWmax = Ma/(H*50plf/12) < Δa*3El/(H³*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
36	72
42	72
45	72
48	72
60	72
72	65
84	55.71428571
96	48.75

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Guard Rail Post Design

M=P/144*TW*H^2/2 TWmax = 2*Ma/(H²*P/144) < Δa*3EI/(H³*P/144*H/2))

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Max Spacing (in)
	36	72
	42	72
	45	72
	48	72
	60	62.4
	72	43.33333333
	84	<36"
	96	<36"

P=	50psf	
Post Hei	ight (in)	Max Spacing (in)
	36	72
	42	63.67346939
	45	55.46666667
	48	48.75
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ight (in)	Max Spacing (in)
	36	57.7777778
	42	42.44897959
	45	36.9777778
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

Guard Rail Post Desig	n
-----------------------	---

System:	ARS
Post:	6 scre

6 screw strong post

Post Properties:

E (psi)	10100000
I (in^4)	1.26
Ma (in-lbs)	26200
Δa	H/12

Load Cases:

200# concent	rated load at to	op of post
M = 200#*H		
Hmax = Ma/.	200# <(∆a*3Ľ	EI/200#)^(1/3)
Hmax 120		
∆ at H=42"	0.38811881	

50plf uniform load along top rail

M=50plf/12*TW*HTWmax = Ma/(H*50plf/12) < $\Delta a*3El/(H^3*50plf/12)$

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
42	72
48	72
60	72
72	72
84	72
96	65.5
108	58.22222222
120	52.4

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Detailed calculations for this post are on pages 26 - 29 $M=P/144*TW*H^2/2$ TWmax = 2*Ma/(H²*P/144) < $\Delta a*3EI/(H^3*P/144*H/2)$)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Max Spacing (in)
	36	72
	42	72
	45	72
	48	72
	60	72
	72	58.22222222
	84	42.7755102
	96	<36"

P=	50psf	
Post Hei	ight (in)	Max Spacing (in)
	36	72
	42	72
	45	72
	48	65.5
	60	41.92
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Max Spacing (in)
	36	72
	42	57.03401361
	45	49.68296296
	48	43.66666667
	60	<36"
	72	<36"
	84	<36"
	96	<36"

Guard Rail Post Design		
System:	ARS	
Post:	4" post	
Post:	4" post	

Post Properties:

E (psi)	10100000
I (in^4)	5.48
Ma (in-lbs)	49500
Δa	H/48

Load Cases:

200# concentrated load at top of post		
M = 200#*H		
Hmax = Ma/.	200# <(∆a*31	EI/200#)^(1/3)
Hmax	131.513998	
∆ at H=42"	0.089239	

50plf uniform load along top rail

M=50plf/12*TW*H TWmax = Ma/(H*50plf/12) < Δa*3El/(H³*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
42	72
48	72
60	72
72	72
84	72
120	57.65416667
132	47.64807163
144	40.03761574

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Detailed calculations for this post are on pages 34 - 35 $TWmax = 2*Ma/(H^{2}*P/144) < \Delta a*3EI/(H^{3}*P/144*H/2))$

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Max Spacing (in)
	36	72
	42	72
	45	72
	48	72
	60	72
	72	72
	84	67.23517979
	96	45.04231771

P=	50psf	
Post He	ight (in)	Max Spacing (in)
	36	72
	42	72
	45	72
	48	72
	60	72
	72	55
	84	40.40816327
	96	<36"

P=	75psf	
Post Hei	ight (in)	Max Spacing (in)
	36	72
	42	72
	45	72
	48	72
	60	52.8
	72	36.66666667
	84	<36"
	96	<36"

Guard Rail Post Design		
System:	ARS	
Post:	Trimline Post	
Post Prope	erties:	
E (psi)	10100000	
l (in^4)	0.524	
Ma (in-lbs)	10400	
Δa	H/12	
Load Cases	5:	
200# concen	trated load at top of post	
M = 200#*H	1	

M = 200#*H		
Hmax = Ma/	200# <(∆a*31	EI/200#)^(1/3)
Hmax	52	
Δ at H=42"	0.93326279	

50plf uniform load along top rail

M=50plf/12*TW*H TWmax = Ma/(H*50plf/12) < Δa*3El/(H³*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
12	72
24	72
30	72
36	69.33333333
42	59.42857143
45	55.46666667
48	52
52	48

Detailed calculations for this post are on pages 36 - 40

M=P/144*TW*H^2/2 TWmax = 2*Ma/(H²*P/144) < Δa*3EI/(H³*P/144*H/2))

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Max Spacing (in)
	12	72
	24	72
	30	72
	36	72
	42	67.91836735
	45	59.16444444
	48	52
	52	44.30769231

P=	50psf	
Post Hei	ght (in)	Max Spacing (in)
	12	72
	24	72
	30	66.56
	36	46.22222222
	42	<36"
	45	<36"
	48	<36"
	52	<36"

P=	75psf	
Post Hei	ght (in)	Max Spacing (in)
	12	72
	24	69.33333333
	30	44.37333333
	36	<36"
	42	<36"
	45	<36"
	48	<36"
	52	<36"

135° Post

Detailed calculations for this post are on pages 30 - 33

Weak axis moment strength, $M_{a,y} = 22,200"\#$ Strong axis moment strength, $M_{a,x} = 27,000"\#$

A SCIA model of one corner post and a six screw post on each side was created to determine how loading is shared with the adjacent posts. The posts are 42" tall and spaced 72" on center. The 50plf live load was checked normal to the top rail or normal to the weak axis of the corner post. The loading to the corner post is highest when it is normal to its weak axis. The baseplate moment was

found to be 10,500"#. Note that for a long run of intermediate posts the baseplate moment would be assumed to be 50plf*6'*42" = 12,600"#. This is a reduction of 16.7%. Therefore, the 135° will only control allowable spacing if the intermediate post strength is greater than 22,200"#/0.833 = 26,700"#. Note that none of the 2-3/8" post develop this strength. Therefore, the 135° post does not limit post spacing for any of the 2-3/8" square posts. However, the anchorage detail may limit post spacing if the anchorage method for the 135° post is different than for the other posts.

2-3/8" Square 4 Screw Post

6061-T6 Aluminum extrusion The bending strength about each axis of the 4 screw post is the same. Note the strength of the post will be limited by the connection to the baseplate.

Post shear strength:

All shear is assumed as carried by the web elements. In accordance with ADMC 2 the multiple elements in the second sec

ADM G.2 the web shear strength is:

 $V_a = V_n / \Omega = F_{su} A_n / k_t / \Omega$

 $F_{su} = 15$ ksi and $k_t = 1.0$ for 6061-T6 or 6005A-T61

 $V_a = [15ksi^2(2.12''*0.1'')/1]/1.95 = 3,262\#$ As this greatly exceeds any potential shear loading on any post for any proposed use in this report further checking of post shear is needed.

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	4 Screw post

 Section Properties

 Ix (in4)
 0.871

 Sx (in3)
 0.733

 Zx (in3)
 0.877

 Iy (in4)
 0.871

 J (in4)
 1.178

 b
 1.562

 t
 0.1

Cw (in6)	0
βx (in)	0
g0 (in)	0

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Moment stre	nath is accordina to	o the 2020 ADM Design Table	2-21 and Chapter
F4.	igen is decording to	o the 2020 horn beorgin rable	
Local buckling	/ Yielding:		
λ	15.62 =	b/t	
λ1	20.8		
λ2	33		
F/Ω (ksi)	21.2 =	21.2	for λ<λ1
		27.3291λ	for $\lambda 1 < \lambda < \lambda 2$
		580/λ	for λ2<λ
[or] () 1 loo	al buckling door no	t apply and the present street	asth is aslaulated
FOR A <a1, loco<="" th=""><td>al buckling does no</td><td>t apply and the moment strei</td><td>ngth is calculated</td></a1,>	al buckling does no	t apply and the moment strei	ngth is calculated
as the minimi	um of 2Jy/12 or 1.55	SFY/12	
Mn/Ω (in-lbs)	18592 =	F/Ω*1000(kips/lbs)*	min(Zx or 1.5Sx)
Rupture Stren	gth		
Fu/Ω	19.4871795		
Znet	0.877		
Mn/Ω (in-lbs)	17090.2564 =	Znet*Fu/Ω*1000kips	s/lbs
Lateral Torsion	hal Buckling:		
Lb (in)	42		
CD	1.3	63	0.5
CI LL (in)	0.3	C_{2}	0.5
Me	609 240411 -	See 2015 ADM E A-9	
λ	10.9513635 =	2 3/1 h*Sy///y*1)^0 5	140 5
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th>2.3(10 37/19 3) 0.3)</th><th>0.5</th></cc,>	c buckling applies	2.3(10 37/19 3) 0.3)	0.5
Mnmb (in-kip	28.3850957 =	$Mp(1-\lambda/Cc)+\pi^{2*E*}$	λ*Sx/Cc^3
Ma (in-lbs)	17203.0883 =	Mnmb/1.65*1000	na – navna stađen u rezista konstanta k
Strength is co	ontrolled by rupture	2	
Ma (in-lbs)	17090		

Moment Strength

For posts directly fascia mounted with 3/8" bolts through post:

Reduced strength at bolt hole: For loading parallel to bolt axis: Assume 3/8" + 1/8" over size = 1/2" holes both sides of post $Z_{red} = 0.7590 \text{ in}^3$ Reduced section properties for the holes

Addition of holes at base of post only affects rupture strength as the controlling failure mode at the holes.

 $M_{nu}/\Omega = ZF_u/\Omega = 0.7590 in^{3*}38 ksi/1.95 = 14,800$ "# (Reduced post strength for bolt holes front and back of post)

For loading perpendicular to bolt axis $Z_{red}=0.8666in^3$

 $M_{nu}/\Omega = ZF_u/\Omega = 0.8666 in^{3*}38 ksi/1.95 = 16,900$ "# (Reduced post strength for bolt holes in sides of post)

2-3/8" Square Post

6061-T6 Aluminum extrusion Note the strength of the post will be limited by the connection to the baseplate.

Typical installation is where the top rail runs parallel to the strong axis of the post.

First calculate moment strength about the strong axis:

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	6 Screw post strong axis

Section Proper	rties
lx (in4)	0.997
Sx (in3)	0.838
Zx (in3)	1
ly (in4)	0.889
J (in4)	1.209
b	1.597
t	0.1

Cw (in6)	0
βx (in)	0
g0 (in)	0

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Moment Str	ength	
Moment stre	ngth is according to	the 2020 ADM Design Table 2-21 and Chapter
F4.		
Local buckling	/ Yielding:	
λ	15.97 =	b/t
λ1	20.8	
λ2	33	
F/Ω (ksi)	21.2 =	21.2 for λ<λ1 27.3291λ for λ1<λ<λ2 580/λ for λ2<λ
For $\lambda < \lambda 1$, loce as the minim	al buckling does not um of Zfy/Ω or 1.5Si	apply and the moment strength is calculated Fy/ Ω
Mn/Ω (in-lbs)	21200 =	$F/\Omega^*1000(kips/lbs)^*min(Zx or 1.5Sx)$
Rupture Stren	gth	
Fu/Ω	19.4871795	
Znet	1	
Mn/Ω (in-lbs)	19487.1795 =	Znet*Fu/Ω*1000kips/lbs
Lateral Torsio	nal Buckling:	
Lb (in)	42	
Cb	1.3	
C1	0.5	C2 0.5
U (in)	0 =	C1*g0-C2*6x/2
Me	623.549608 =	See 2015 ADM F.4-9
λ	11.5743621 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th></cc,>	c buckling applies	
Mnmb (in-kip	32.225108 =	$Mp(1-\lambda/Cc)+\pi^{2*E*\lambda*Sx/Cc^{3}}$
Ma (in-lbs)	19530.3685 =	Mnmb/1.65*1000
Strength is co	ontrolled by rupture	
Ma (in-lbs)	19487	

For posts directly fascia mounted with 3/8" bolts through post:

Reduced strength at bolt hole: For loading parallel to bolt axis: Assume 3/8" + 1/8" over size =1/2" holes both sides of post $Z_{red} = 0.886$ in³ Reduced section properties for the holes.

Addition of holes at base of post only affects rupture strength as the controlling failure mode at the holes.

 $M_{nu}/\Omega = ZF_u/\Omega = 0.886in^{3*}38ksi/1.95 = 17,300$ "# (Reduced post strength for bolt holes front and back of post)

For loading perpendicular to bolt axis $Z_{red}=0.987in^3$

 $M_{nu}/\Omega = ZF_u/\Omega = 0.987 in^{3*}38 ksi/1.95 = 19,200$ "# (Reduced post strength for bolt holes in sides of post)

Next calculate moment strength about the weak axis:

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	6 Screw post weak axis

Section Properties

lx (in4)	0.889
Sx (in3)	0.838
Zx (in3)	0.902
ly (in4)	0.997
J (in4)	1.209
b	1.597
t	0.1

Cw (in6)	0
βx (in)	0
g0 (in)	0

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

interne ou	engen		
Moment stre	ngth is according to	the 2020 ADM Design Table 2-21 and	Chapter
F4.			
Local buckling	/ Yielding:		
λ	15.97 =	b/t	
λ1	20.8		
λ2	33		
F/Ω (ksi)	21.2 =	21.2 for	λ<λ1
		27.3291λ for	$\lambda 1 < \lambda < \lambda 2$
		580/λ for	λ2<λ
For $\lambda < \lambda 1$ loc	al huckling does not	apply and the moment strength is cal	culated
as the minim	μ of $7fv/O$ or 1.59	$E_{\rm L}/O$	curacea
us the minim	uni 0j 2jy/s2 01 1.551	- y/ 12	
Mn/Ω (in-lbs)	19122 =	F/Ω *1000(kips/lbs)*min(Zx or	1.5Sx)
			,
Rupture Stren	gth		
Fu/Ω	19.4871795		
Znet	0.902		
Mn/Ω (in-lbs)	17577.4359 =	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:		
Lb (in)	42		
Cb	1.3		
C1	0.5	C2 0.5	
U (in)	0 =	С1*g0-С2*вх/2	
Me	660.340157 =	See 2015 ADM F.4-9	
λ	11.2473113 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" td=""><td>c buckling applies</td><td></td><td></td></cc,>	c buckling applies		
Mnmb (in-kip	29.4580361 =	Mp(1-λ/Cc)+π^2*E*λ*Sx/Cc^3	
Ma (in-lbs)	17853.3552 =	Mnmb/1.65*1000	
Ctronath is so	naturallad by mustime		
Strength is co	ntrollea by rupture		
ivia (in-lbs)	1/5//		

Moment Strength

For posts directly fascia mounted with 3/8" bolts through post:

Reduced strength at bolt hole: For loading parallel to bolt axis: Assume 3/8" + 1/8" over size =1/2" holes both sides of post $Z_{red} = 0.788 \text{ in}^3$ Reduced section properties for the holes

Addition of holes at base of post only affects rupture strength as the controlling failure mode at the holes.

 $M_{nu}/\Omega = ZF_u/\Omega = 0.788in^{3*}38ksi/1.95 = 15,400$ "# (Reduced post strength for bolt holes front and back of post)

For loading perpendicular to bolt axis $Z_{red}=0.889in^3$

 $M_{nu}/\Omega = ZF_u/\Omega = 0.889in^{3*}38ksi/1.95 = 17,300$ "# (Reduced post strength for bolt holes in sides of post)

CR LAURENCE ALUMINUM RAIL SYSTEM

Heavy Post

6061-T6 Aluminum

Heavy posts are typically used for cable rail corner and end posts that receive high cable loading. Typical installation is so that the strong axis is parallel with the top rail and cables run through the thinner portion of the wall.

First calculate moment strength about the strong axis:

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Heavy Post Strong Axis

Section Properties

lx (in4)	1.264
Sx (in3)	1.006
Zx (in3)	1.347
ly (in4)	1.076
J (in4)	2.34
b	1.597
t	0.1

Cw (in6)	0
βx (in)	0
g0 (in)	0

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Moment Str	ength			
Moment stre	ngth is according t	o the 2020 ADM Design Table 2-21 and Chapter		
F4.				
Local buckling	/ Yielding:			
λ	15.97 =	b/t		
λ1	20.8			
λ2	33			
F/Ω (ksi)	21.2 =	21.2 for λ<λ1		
		27.3291λ for λ1<λ<λ2		
		580/λ for $λ2 < λ$		
For λ<λ1, loco	al buckling does no	t apply and the moment strength is calculated		
as the minim	um of Zfy/ Ω or 1.53	SFy/Ω		
25.5 W 1000 R4				
Mn/Ω (in-lbs)	28556 =	F/Ω *1000(kips/lbs)*min(Zx or 1.5Sx)		
Rupture Stren	gth			
Fu/Ω	19.4871795			
Znet	1.347	M		
Mn/Ω (in-lbs)	26249.2308 =	Znet*Fu/Ω*1000kips/lbs		
Lateral Terrie	al Ruckling			
Lateral Torsio	A2			
cb (iii)	42			
C1	0.5	C2 0.5		
U (in)	0 =	C1*a0-C2*8x/2		
Me	954.379372 =	See 2015 ADM F.4-9		
λ	10.2505939 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5		
λ <cc, inelasti<="" th=""><th colspan="4">λ<cc, applies<="" buckling="" inelastic="" th=""></cc,></th></cc,>	λ <cc, applies<="" buckling="" inelastic="" th=""></cc,>			
Mnmb (in-kip	43.3983106 =	$Mp(1-\lambda/Cc)+\pi^{2}E^{\lambda}Sx/Cc^{3}$		
Ma (in-lbs)	26302.0064 =	Mnmb/1.65*1000		
				
Strength is controlled by rupture				
ivia (in-lbs)	26249			

Next calculate moment strength about the weak axis:

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS	
Extrusion	Heavy Post Weak Axis	

Section Properties

lx (in4)	1.076
Sx (in3)	0.8889
Zx (in3)	1.131
ly (in4)	1.264
J (in4)	2.34
b	1.597
t	0.1

Cw (in6)	0
βx (in)	0
g0 (in)	0

Alloy:	0001-10	
Fu (ksi)	38	
Fy (ksi)	35	
E (ksi)	10100	
Cc	66	

Woment Strength				
Moment stre	ngth is according to	the 2020 ADM Design Tab	ole 2-21 and Chapter	
F4.	11.272 (11.4 ⁻¹)			
Local buckling	/ Yielding:			
λ	15.97 =	b/t		
λ1	20.8			
λ2	33			
F/Ω (ksi)	21.2 =	21.2 27.3291λ 580/λ	for λ<λ1 for λ1<λ<λ2 for λ2<λ	
For $\lambda < \lambda 1$, local buckling does not apply and the moment strength is calculated as the minimum of Zfy/ Ω or 1.5SFy/ Ω				
Mn/Ω (in-lbs)	23977 =	F/Ω*1000(kips/lbs)	$F/\Omega^*1000(kips/lbs)^*min(Zx or 1.5Sx)$	
Rupture Strength				
Fu/Ω	19.4871795			
Znet	1.131			
Mn/Ω (in-lbs)	22040 =	Znet*Fu/Ω*1000ki	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	42			
Cb	1.3			
C1	0.5	C2	0.5	
U (in)	0 =	C1*g0-C2*6x/2		
Me	1034.39984 =	See 2015 ADM F.4-	See 2015 ADM F.4-9	
λ	9.2553488 =	2.3(Lb*Sx/(Iy*J)^0.	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, applies<="" buckling="" inelastic="" td=""></cc,>				
Mnmb (in-kip	36.8864557 =	Mp(1-λ/Cc)+π^2*E	$Mp(1-\lambda/Cc)+\pi^{2*E*\lambda*Sx/Cc^{3}}$	
Ma (in-lbs)	22355.4277 =	Mnmb/1.65*1000		
Strength is controlled by rupture				
Ma (in-lbs)	22040			

CRL 135° Post – Corner post

First calculate moment strength about the strong axis which would be a vertical line in the image to the right.

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	135° Corner Post Strong Axis

Section Properties

lx (in4)	1.819
Sx (in3)	0.9352
Zx (in3)	1.392
ly (in4)	1.218
J (in4)	1.951
b	1.883
t	0.1

Cw (in6)	0.0342
βx (in)	-0.0157
g0 (in)	0

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Moment Strength

Moment strength is according to the 2020 ADM Design Table 2-21 and Chapter		
F4.		
Local buckling	/ Yielding:	
Support Cond	dition	
Flat elemen	t under uniform o	compression supported on both sides
λ	18.83 =	b/t
λ1	20.8	
λ2	33	
F/O (ksi)	21.2 =	21.2 for $\lambda < \lambda 1$
1/12 (131)	21.2 -	$27.3 - 291\lambda \qquad for \lambda 1 < \lambda < \lambda 2$
		$\frac{580}{\lambda}$ for $\lambda 2 < \lambda$
For $\lambda < \lambda 1$, loce	al buckling does n	ot apply and the moment strength is calculated
as the minim	um of Zfy/Ω or 1	5SFy/Ω
Mn/Ω (in-lbs)	29527 =	$F/\Omega^*1000(kips/lbs)*min(Zx or 1.5Sx)$
		· · · · · · · · · · · · · · · · · · ·
Rupture Stren	gth	
Fu/Ω	19.4871795	
Znet	1.392	
Mn/Ω (in-lbs)	27126.1538 =	Znet*Fu/Ω*1000kips/lbs
Lataral Tarria	nol Ruskling.	
Lateral Torsio		
Cb (III)	42	
CD (1	1.5	C2 0.5
LL (in)	0.003925 =	$C1*\alpha D_{-}C2*Bx/2$
Me	927.642248 =	See 2015 ADM F.4-9
λ	10.0247269 =	2.3(Lb*Sx/(Iv*J)^0.5)^0.5
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th>5</th></cc,>	c buckling applies	5
Mnmb (in-kip	44.5705501 =	$Mp(1-\lambda/Cc)+\pi^2*E*\lambda*Sx/Cc^3$
Ma (in-lbs)	27012.4546 =	Mnmb/1.65*1000
Strength is co	ontrolled by latera	al torsional buckling

Ma (in-lbs) 27012

Next calculate moment strength about the weak axis:

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	135° Corner Post Weak Axis

Section Properties

lx (in4)	1.218
Sx (in3)	0.8123
Zx (in3)	1.141
ly (in4)	1.819
J (in4)	1.951
b	1.883
t	0.1

Cw (in6)	0.0342
βx (in)	-0.2282
g0 (in)	0

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Moment Strength

Moment stre	ngth is according to	the 2020 ADM Design Table	e 2-21 and Chapter	
F4.				
Local buckling	/ Yielding:			
Support Cond	dition			
Flat elemen	it under uniform con	mpression supported on bot	h sides	
λ	18.83 =	b/t		
λ1	20.8			
λ2	33			
F/Ω (ksi)	21.2 =	21.2	for λ<λ1	
		27.3291λ	for λ1<λ<λ2	
		580/λ	for λ2<λ	
For λ<λ1, loca as the minim	For $\lambda < \lambda 1$, local buckling does not apply and the moment strength is calculated as the minimum of Zfy/ Ω or 1.5SFy/ Ω			
Mn/Ω (in-lbs)	24203 =	F/Ω*1000(kips/lbs)*	min(Zx or 1.5Sx)	
Rupture Stren	gth			
Fu/Ω	19.4871795			
Znet	1.141			
Mn/Ω (in-lbs)	22234.8718 =	Znet*Fu/Ω*1000kips	s/lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	42			
Cb	1.3			
C1	0.5	C2	0.5	
U (in)	0.05705 =	С1*g0-С2*вх/2		
Me	1140.85482 =	See 2015 ADM F.4-9		
λ	8.42468353 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th><th></th></cc,>	c buckling applies			
Mnmb (in-kip	37.2102185 =	Mp(1-λ/Cc)+π^2*E*	λ*Sx/Cc^3	
Ma (in-lbs)	22551.6476 =	Mnmb/1.65*1000		
Strength is co	Strength is controlled by rupture			
Ma (in-lbs)	22235			

CRL Standard 4"x4" Square Post Strength 6005A-T61 or 6061-T6

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	4" Square Post

Section Properties

lx (in4)	5.48
Sx (in3)	2.52
Zx (in3)	3.2
ly (in4)	5.48
J (in4)	7.2
b	3.15
t	0.12

Cw (in6)	0.0296
βx (in)	0
g0 (in)	0

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Moment Strength

Moment stre	ngth is according to	o the 2020 ADM Design T	able 2-21 and Chapter	
F4.	/ Violding:			
Support Conc	dition			
	t		hath sides	
Flat elemen	t under uniform co	mpression supported on	both sides 🗸 🗸	
λ	26.25 =	b/t		
λ1	20.8			
λ2	33			
F/Ω (ksi)	19.66125 =	21.2 27.3291λ 580/λ	for λ<λ1 for λ1<λ<λ2 for λ2<λ	
For λ>λ1, loco Mn/Ω (in-lbs)	al buckling applies o 49546 =	and the moment strength F/Ω*1000(kips/lb	is calculated as F/Ω*S	
, (,				
Rupture Stren	gth			
Fu/Ω	19.4871795			
Znet	3.2			
Mn/Ω (in-lbs)	62358.9744 =	Znet*Fu/Ω*1000	kips/lbs	
	1.5.1.1			
Lateral Torsio	nal Buckling:			
Lb (in)	42			
CD C1	1.3	C 2	0.5	
	0.5	C_{2}	0.5	
U (in)	0 =	CI^*g0-CZ^*OX/Z	1.0	
Ne	3778.12930 =	300 2015 ADIVI F.	See 2015 ADM F.4-9	
A laCa inalacti	8.15405212 =	2.3(LD ' 3X/(IY ' J)'	0.5/~0.5	
Acce, merusu		$Mn/1 \lambda/CalimA2$	* [*] * [/ [~] ?	
Ma (in lbc)	103.207404 =	Nnmh/1 65*100	$N/P(1-A/CC) + \pi^2 TE^* A^* SX/CC^{3}$	
ivia (m-ibs)	02010.2302 =	1001 2001 2001	0	
Strength is co	ontrolled by local by	ickling		
Ma (in-lhs)	49546	i i i i i i i i i i i i i i i i i i i		

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Trim Line Strong Axis

Section Properties

lx (in4)	0.524
Sx (in3)	0.44
Zx (in3)	0.567
ly (in4)	0.144
J (in4)	0.316
b	0.696
t	0.118

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Cw (in6)	0.012
βx (in)	0
g0 (in)	0

Moment Str	rength		
Moment stre	ngth is according to	o the 2020 ADM Design To	ble 2-21 and Chapter
F4.			
Local buckling	/ Yielding:		
Support Cond	dition		
Flat elemen	t under uniform co	ompression supported on l	ooth sides 🔶
λ	5.89830508 =	b/t	
λ1	20.8		
λ2	33		
F/Ω (ksi)	21.2 =	21.2	for λ<λ1
		27.3291λ	for λ1<λ<λ2
		580/λ	for λ2<λ
Mn/Ω (in-lbs) Rupture Stren	12027 =	F/Ω*1000(kips/lb.	s)*min(Zx or 1.55x)
Rupture Stren	gu		
Fu/Ω	19.4871795		
Znet	0.567		
Mn/Ω (in-lbs)	11049.2308 =	Znet*Fu/Ω*1000k	kips/lbs
Lateral Torsio	nal Buckling:		
Lb (in)	42		
Cb	1.3		
C1	0.5	C2	0.5
U (in)	0 =	C1*g0-C2*Bx/2	
Me	128.337847 =	See 2015 ADM F.4	1-9
λ	18.4867055 =	2.3(Lb*Sx/(Iy*J)^(0.5)^0.5
λ <cc, inelasti<="" td=""><td>c buckling applies</td><td></td><td></td></cc,>	c buckling applies		
Mnmb (in-kip	17.1067241 =	<i>Mp(1-λ/Cc)+π^2*</i>	<i>E*λ*Sx/Cc^3</i>
Ma (in-lbs)	10367.7116 =	Mnmb/1.65*1000)
Ctuon oth in	netrollad by latard	toraional bushling	
Strength is co	ontrolled by lateral	torsional buckling	
ivia (in-lbs)	10368		

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Trim Line Weak Axis

Section Properties

lx (in4)	0.144
Sx (in3)	0.44
Zx (in3)	0.31
ly (in4)	0.524
J (in4)	0.316
b	1.55
t	0.118

Cw (in6)	0.012
βx (in)	0
g0 (in)	0

Aluminum Properties

Alloy:	6061-T6
Fu (ksi)	38
Fy (ksi)	35
E (ksi)	10100
Cc	66

Moment stre	ngth is accordin	g to the 2020 ADM Design Tab	le 2-21 and Chapter	
F4.	5			
Local buckling	/ Yielding:			
Support Conc	lition			
Flat elemen	t under uniform	compression supported on bo	oth sides	
λ	13.1355932 =	b/t		
λ1	20.8			
λ2	33			
F/Ω (ksi)	21.2 =	21.2	for $\lambda < \lambda 1$	
		27.3291λ	for λ1<λ<λ2	
		580/λ	for λ2<λ	
For $\lambda < \lambda 1$, local buckling does not apply and the moment strength is calculated as the minimum of Zfy/ Ω or 1.5SFy/ Ω				
Mn/Ω (in-lbs)	6576 =	F/Ω*1000(kips/lbs)	*min(Zx or 1.5Sx)	
Rupture Stren	gth			
Fu/Ω	19.4871795			
Znet	0.31			
Mn/Ω (in-lbs)	6041.02564 =	Znet*Fu/Ω*1000kip	ps/lbs	
Lateral Torsion	nal Buckling:			
Lb (in)	42			
Cb	1.3			
C1	0.5	C2	0.5	
U (in)	0 =	С1*g0-С2*вх/2		
Me	244.815633 =	See 2015 ADM F.4-	See 2015 ADM F.4-9	
λ	13.3849676 =	2.3(Lb*Sx/(Iy*J)^0.5	5)^0.5	
λ <cc, inelasti<="" th=""><th>c buckling applie</th><th>es</th><th></th></cc,>	c buckling applie	es		
Mnmb (in-kip	10.6916093 =	<i>Mp</i> (1-λ/Cc)+π^2*E	*λ*Sx/Cc^3	
Ma (in-lbs)	6479.76319 =	Mnmb/1.65*1000		
Strength is co	ntrolled by rupt	ure		
Ma (in-lbs)	6041			

Moment Strength

TRIM LINE STANCHION

The trim line posts fit a 7/16"x2" flat bar stanchion. S = $0.292in^3$ Z = $0.44in^3$

When used to reinforce post: Yield limit state: $M_a = 0.44*35ksi/1.65 = 9,330$ "# (For 6061-T6 or 6005-T61 aluminum) $M_a = 0.44*30ksi/1.67 = 7,900$ "# (For 304 or 316 stainless)

When used as a stanchion where distance between the bottom of the post and the bottom of the stanchion is less than 1". Rupture limit state: $M_a = 0.44in^{3*}38ksi/1.95 = 8,570$ "# (For 6061-T6 or 6005-T61 aluminum) $M_a = 0.292in^{3*}70ksi/2 = 10,200$ "# (For 304 or 316 stainless)

POST ANCHORAGE

Posts can be attached to wood, concrete or steel using several standard connection details. Note that in most cases the post anchorage strength will be less than the post strength and will be the limiting strength. First, basic performance criteria for each anchorage detail are listed below. Then, more specific performance criteria is shown with the supporting calculations on the following pages. Lastly, detailed moment strength calculations are shown for each detail.

Basic Performance Criteria:

Note that many anchorage methods involve two connections. For instance a surface mount to concrete anchorage detail involves screwing the post to the baseplate and then anchoring the baseplate to the concrete. The performance criteria for both connections must be checked and the overall performance criteria is the more restrictive of the two.

Post to baseplate connections:

4 screw 2-3/8" square post screwed to baseplate (includes 135° post)

Allowable moment, $M_{a,x} = 10,500$ "# Handles top rail live loading at 60" tall with 42" post spacing or 42" tall with 60" post spacing.

6 screw 2-3/8" square post screwed to baseplate (includes heavy post)

Allowable post moment, $M_{a,x} = 15,700$ "# Handles top rail live loading at 60" tall with 60" post spacing or at 48" tall with 72" post spacing.

135° post at corner mixed with 6 screw square posts at intermediates

Allowable post moment, $M_{a,x} = 12,600$ "# Handles top rail live loading at 60" tall with 60" post spacing or at 48" tall with 72" post spacing.

4" square post screwed to baseplate

Allowable post moment, $M_{a,x} = 17,300$ "# Handles top rail live loading at 60" tall with 66" post spacing or 54" tall with 72" post spacing.

Aluminum stanchion screwed to baseplate

Allowable post moment, $M_{a,x} = 12,400$ "# Handles top rail live loading at 60" tall with 66" post spacing or 54" tall with 72" post spacing.

Aluminum stanchion welded to baseplate

Allowable post moment, $M_{a,x} = 10,500$ "# Handles top rail live loading at 60" tall with 66" post spacing or 54" tall with 72" post spacing.

Steel stanchion welded to baseplate

Allowable post moment, $M_{a,x} = 13,600$ "# Handles top rail live loading at 60" tall with 66" post spacing or 54" tall with 72" post spacing.

Baseplate Anchorage Details:

3/8"x4" KH-EZ w/ 4-3/16" anchor edge distance to uncracked concrete Allowable moment, $M_{a,x} = 13,500$ "# Handles top rail live loading at 48" tall with 66" post spacing or 60" tall with 54" post spacing.

3/8"x4" KH-EZ w/ 4-3/16" anchor edge distance to cracked concrete

Allowable moment, $M_{a,x} = 9,600$ "# Handles top rail live loading at 42" tall with 54" post spacing or 48" tall with 48" post spacing.

3/8"x3-3/4" KB-TZ w/ 2-5/8" anchor edge distance to uncracked concrete

Allowable moment, $M_{a,x} = 14,200$ "# Handles top rail live loading at 42" tall with 72" post spacing or 60" tall with 54" post spacing.

3/8"x3-3/4" KB-TZ w/ 2-5/8" anchor edge distance to cracked concrete

Allowable moment, $M_{a,x} = 11,000$ "# Handles top rail live loading at 42" tall with 60" post spacing or 60" tall with 42" post spacing.

3/8" A307 or 304 Lag Screw w/ 4-1/4" penetration

Optimal lag screw penetration. Allowable moment, $M_{a,x} = 11,400$ "# Handles top rail live loading at 42" tall with 60" post spacing or 60" tall with 42" post spacing. Higher strength connections will require higher strength material or larger diameter.

3/8" A307 or 304 Lag Screw w/ 3-1/2" penetration

Allowable moment, $M_{a,x} = 9,860$ "# Handles top rail live loading at 42" tall with 54" post spacing or 48" tall with 48" post spacing.

3/8" A307 or 304 Lag Screw w/ 3" penetration

Allowable moment, $M_{a,x} = 8,700$ "# Handles top rail live loading at 42" tall with 48" post spacing or 48" tall with 42" post spacing.

Core Mount Details

Post set in 4" Deep Core Mount, 3-5/8" edge distance measured from center of post Allowable moment, $M_{a,x} = 12,600$ "#

Handles top rail live loading at 42" tall with 72" post spacing or 60" tall with 48" post spacing.

Stanchion set in 4" Deep Core Mount, 3-5/8" edge distance measured from center of post Allowable moment, $M_{a,x} = 11,400$ "# Handles top rail live loading at 42" tall with 60" post spacing or 60" tall with 42" post spacing.

Fascia Mount DetailsFascia Bracket To Wood, 3-3/8" lag Screw PenetrationTop lag screws located 2" below floor.Allowable moment, $M_{a,x} = 10,600$ "# (measured at floor)

Handles top rail live loading at 42" tall with 60" post spacing or 60" tall with 42" post spacing.

Fascia Bracket to Concrete, Uncracked Concrete

Allowable moment, $M_{a,x} = 11,300$ "# (measured at floor) Handles top rail live loading at 42" tall with 60" post spacing or 60" tall with 42" post spacing.

Fascia Bracket to Concrete, Cracked Concrete

Allowable moment, $M_{a,x} = 8,000$ "# (measured at floor) Handles top rail live loading at 42" tall with 48" post spacing.

Post Directly Fascia Mounted W/ 3/8" Lag Screws

Allowable moment, $M_{a,x} = 7,800$ "# (measured at floor) Handles top rail live loading at 42" tall with 48" post spacing.

Post Directly Fascia Mounted W/ 3/8" Carriage Bolts

Allowable moment, $M_{a,x} = 17,400$ "# (measured at floor) Handles top rail live loading at 60" tall with 66" post spacing or 54" tall with 72" post spacing.

System: ARS Detail Description: 4 screw 2-3/8" post screwed to baseplate

Ma (in-lbs) 10500

Load Cases:

200# concentrated load at top of post M = 200#*HHmax = Ma/200#

Hmax 52.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	70
42	60
48	52.5
60	42
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	71.0
	30	63.5
	36	58.0
	42	53.7
	48	50.2
	60	44.9
	72	41.0
	84	37.9
	96	<36"

P=	50psf	
Post Heig	ht (in)	Allowable Post Spacing (in)
	24	50.2
	30	44.9
	36	41.0
	42	37.9
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P= 75p	osf
Post Height (in)	Allowable Post Spacing (in)
24	41.0
30	36.7
36	<36"
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

System: ARS Detail Description: 6 screw 2-3/8" post screwed to baseplate

Ma (in-lbs) 15700

Load Cases:

200# concentrated load at top of post M = 200#*HHmax = Ma/200#

Hmax 78.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	62.8
72	52.33333333
84	44.85714286
96	39.25

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	70.9
	42	65.6
	48	61.4
	60	54.9
	72	50.1
	84	46.4
	96	43.4

P=	50psf	7
Post He	ight (in)	Allowable Post Spacing (in)
	24	61.4
	30	54.9
	36	50.1
	42	46.4
	48	43.4
	60	38.8
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	50.1
	30	44.8
	36	40.9
	42	37.9
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System:ARSDetail Description:135° post at corners mixed with 6 screw intermediate posts

Ma (in-lbs) 12600

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 63

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	63
60	50.4
72	42
84	36
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	69.6
	36	63.5
	42	58.8
	48	55.0
	60	49.2
	72	44.9
	84	41.6
	96	38.9

P=	50psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	55.0
	30	49.2
	36	44.9
	42	41.6
	48	38.9
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	44.9
	30	40.2
	36	36.7
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 4" post screwed to post plate

Ma (in-lbs) 17300

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 86.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	69.2
72	57.66666667
84	49.42857143
96	43.25

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	72.0
	42	68.9
	48	64.4
	60	57.6
	72	52.6
	84	48.7
	96	45.6

P=	50psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	64.4
	30	57.6
	36	52.6
	42	48.7
	48	45.6
	60	40.8
	72	37.2
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	52.6
	30	47.1
	36	43.0
	42	39.8
	48	37.2
	60	<36"
	72	<36"
	84	<36"
	96	<36"

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

2/15/21

System: ARS Detail Description: Aluminum Stanchion Screwed to Baseplate

Ma (in-lbs) 12400

Load Cases:

200# concentrated load at top of post M = 200#*H

 Hmax = Ma/200#

 Hmax
 62

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	70.85714286
48	62
60	49.6
72	41.33333333
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	69.0
	36	63.0
	42	58.3
	48	54.6
	60	48.8
	72	44.5
	84	41.2
	96	38.6

P=	50psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	54.6
	30	48.8
	36	44.5
	42	41.2
	48	38.6
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Heig	ght (in)	Allowable Post Spacing (in)
	24	44.5
	30	39.8
	36	36.4
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Aluminum Stanchion Welded to Baseplate

Ma (in-lbs) 10500

Load Cases:

200# concentrated load at top of post M = 200#*H

Hmax = Ma/200# **Hmax 52.5**

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	70
42	60
48	52.5
60	42
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Height (i	n)	Allowable Post Spacing (in)
24		71.0
30		63.5
36		58.0
42		53.7
48		50.2
60		44.9
72		41.0
84		37.9
96		<36"

P=	50psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	50.2
	30	44.9
	36	41.0
	42	37.9
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	41.0
	30	36.7
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Steel stanchion welded to baseplate

Ma (in-lbs) 13600

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 68

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	68
60	54.4
72	45.33333333
84	38.85714286
96	<36"

Wind Load

M=P/144*TW*H^2/2 Hmax = (2*Ma/(TW*P/144))^(1/2)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	66.0
	42	61.1
	48	57.1
	60	51.1
	72	46.6
	84	43.2
	96	40.4

P=	50psf	7
Post Hei	ight (in)	Allowable Post Spacing (in)
1	24	57.1
	30	51.1
	36	46.6
	42	43.2
	48	40.4
	60	36.1
	72	<36"
	84	<36"
	96	<36"

P= 75	psf
Post Height (in)	Allowable Post Spacing (in)
24	46.6
30	41.7
36	38.1
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

2/15/21

System: ARS Detail Description: 3/8"x4" KH-EZ in uncracked concrete and 5x5 baseplate

Ma (in-lbs) 13500

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 67.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	67.5
60	54
72	45
84	38.57142857
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	65.7
	42	60.9
	48	56.9
	60	50.9
	72	46.5
	84	43.0
	96	40.2

P=	50psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	56.9
	30	50.9
	36	46.5
	42	43.0
	48	40.2
	60	36.0
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	46.5
	30	41.6
	36	37.9
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8"x4" KH-EZ in uncracked concrete and 3x5 baseplate

Ma (in-lbs) 7130

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 35.65

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	71.3
30	57.04
36	47.53333333
42	40.74285714
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	58.5
	30	52.3
	36	47.8
	42	44.2
	48	41.4
	60	37.0
	72	<36"
	84	<36"
	96	<36"

P= 50	Opsf	
Post Height (in)		Allowable Post Spacing (in)
24		41.4
30		37.0
36		<36"
42		<36"
48		<36"
60		<36"
72		<36"
84		<36"
96		<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	<36"
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8"x4" KH-EZ in uncracked concrete and 6-1/2x6-1/2" baseplate

Ma (in-lbs) 17800

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 89

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	71.2
72	59.33333333
84	50.85714286
96	44.5

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	72.0
	42	69.9
	48	65.4
	60	58.5
	72	53.4
	84	49.4
	96	46.2

P=	50psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	65.4
	30	58.5
	36	53.4
	42	49.4
	48	46.2
	60	41.3
	72	37.7
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	53.4
	30	47.7
	36	43.6
	42	40.3
	48	37.7
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System:ARSDetail Description:3/8"x4" KH-EZ in cracked concrete and 5x5" baseplate

Ma (in-lbs) 9600

Load Cases:

200# concentrated load at top of post M = 200#*H

Hmax = Ma/200# Hmax 48

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	64
42	54.85714286
48	48
60	38.4
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	67.9
	30	60.7
	36	55.4
	42	51.3
	48	48.0
	60	42.9
	72	39.2
	84	36.3
	96	<36"

P=	50psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	48.0
	30	42.9
	36	39.2
	42	36.3
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	39.2
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8"x4" KH-EZ in cracked concrete and 3x5" baseplate

Ma (in-lbs) 5120

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 25.6

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	51.2
30	40.96
36	<36"
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P= 25psf	
Post Height (in)	Allowable Post Spacing (in)
24	49.6
30	44.3
36	40.5
42	37.5
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

P= 50psf	
Post Height (in)	Allowable Post Spacing (in)
24	<36"
30	<36"
36	<36"
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

P=	75psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	<36"
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8"x4" KH-EZ in cracked concrete and 6-1/2x6-1/2" baseplate

Ma (in-lbs) 12700

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 63.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	63.5
60	50.8
72	42.33333333
84	36.28571429
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	69.8
	36	63.7
	42	59.0
	48	55.2
	60	49.4
	72	45.1
	84	41.7
	96	39.0

P=	50psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	55.2
	30	49.4
	36	45.1
	42	41.7
	48	39.0
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	45.1
	30	40.3
	36	36.8
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

2/15/21

System: ARS Detail Description: 3/8"x3-3/4" KB-TZ in uncracked concrete and 5x5" baseplate

Ma (in-lbs) 14200

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 71

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	71
60	56.8
72	47.33333333
84	40.57142857
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	67.4
	42	62.4
	48	58.4
	60	52.2
	72	47.7
	84	44.1
	96	41.3

P=	50psf	
Post Height (in)		Allowable Post Spacing (in)
	24	58.4
	30	52.2
	36	47.7
	42	44.1
	48	41.3
	60	36.9
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Height (in)		Allowable Post Spacing (in)
	24	47.7
	30	42.6
	36	38.9
	42	36.0
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8"x3-3/4" KB-TZ in uncracked concrete and 3x5" baseplate

Ma (in-lbs) 7490

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 37.45

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	59.92
36	49.93333333
42	42.8
48	37.45
60	<36"
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	60.0
	30	53.6
	36	49.0
	42	45.3
	48	42.4
	60	37.9
	72	<36"
	84	<36"
	96	<36"

P=	50psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	42.4
	30	37.9
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Heigh	t (in)	Allowable Post Spacing (in)
	24	<36"
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

2/15/21

System:ARSDetail Description:3/8"x3-3/4" KB-TZ in uncracked concrete and 6-1/2x6-1/2" baseplate

Ma (in-lbs) 18800

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 94

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	72
72	62.66666667
84	53.71428571
96	47

Wind Load

M=P/144*TW*H^2/2 Hmax = (2*Ma/(TW*P/144))^(1/2)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	72.0
	42	71.8
	48	67.2
	60	60.1
	72	54.8
	84	50.8
	96	47.5

P=	50psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	67.2
	30	60.1
	36	54.8
	42	50.8
	48	47.5
	60	42.5
	72	38.8
	84	<36"
	96	<26"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	54.8
	30	49.1
	36	44.8
	42	41.5
	48	38.8
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8"x3-3/4" KB-TZ in cracked concrete and 5x5" baseplate

Ma (in-lbs) 11000

Load Cases:

200# concentrated load at top of post M = 200#*H

Hmax = Ma/200# **Hmax 55**

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	62.85714286
48	55
60	44
72	36.66666667
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Heig	;ht (in)	Allowable Post Spacing (in)
	24	72.0
	30	65.0
	36	59.3
	42	54.9
	48	51.4
	60	46.0
	72	42.0
	84	38.8
	96	36.3

P=	50psf]
Post Heig	ght (in)	Allowable Post Spacing (in)
	24	51.4
	30	46.0
	36	42.0
	42	38.8
	48	36.3
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	42.0
	30	37.5
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8"x3-3/4" KB-TZ in cracked concrete and 3x5" baseplate

Ma (in-lbs) 5840

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 29.2

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	58.4
30	46.72
36	38.93333333
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Heig	ght (in)	Allowable Post Spacing (in)
	24	52.9
	30	47.4
	36	43.2
	42	40.0
	48	37.4
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P= 50ps	sf
Post Height (in)	Allowable Post Spacing (in)
24	37.4
30	<36"
36	<36"
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

P=	75psf]
Post Height (in)	Allowable Post Spacing (in)
24	L .	<36"
30)	<36"
36	5	<36"
42	2	<36"
48	3	<36"
60)	<36"
72	2	<36"
84	L L	<36"
96	5	<36"

System:ARSDetail Description:3/8"x3-3/4" KB-TZ in cracked concrete and 6-1/2x6-1/2" baseplate

Ma (in-lbs) 14500

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 72.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	58
72	48.33333333
84	41.42857143
96	36.25

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	68.1
	42	63.1
	48	59.0
	60	52.8
	72	48.2
	84	44.6
	96	41.7

P=	50psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	59.0
	30	52.8
	36	48.2
	42	44.6
	48	41.7
	60	37.3
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	48.2
	30	43.1
	36	39.3
	42	36.4
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8" Lag screw w/ 4-1/4" penetration and 5x5 baseplate

Ma (in-lbs) 11400

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 57

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	65.14285714
48	57
60	45.6
72	38
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	66.2
	36	60.4
	42	55.9
	48	52.3
	60	46.8
	72	42.7
	84	39.5
	96	37.0

P=	50psf	7
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	52.3
	30	46.8
	36	42.7
	42	39.5
	48	37.0
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Heigh	t (in)	Allowable Post Spacing (in)
	24	42.7
	30	38.2
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8" Lag screw w/ 3-1/2" penetration and 5x5 baseplate

Ma (in-lbs) 9860

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 49.3

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	65.73333333
42	56.34285714
48	49.3
60	39.44
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	68.8
	30	61.5
	36	56.2
	42	52.0
	48	48.6
	60	43.5
	72	39.7
	84	36.8
	96	<36"

P=	50psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	48.6
	30	43.5
	36	39.7
	42	36.8
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	39.7
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

2/15/21

System: ARS Detail Description: 3/8" Lag screw w/ 3" penetration and 5x5 baseplate

Ma (in-lbs) 8700

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 43.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	69.6
36	58
42	49.71428571
48	43.5
60	<36"
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	64.6
	30	57.8
	36	52.8
	42	48.8
	48	45.7
	60	40.9
	72	37.3
	84	<36"
	96	<36"

P=	50psf	
Post Heig	ht (in)	Allowable Post Spacing (in)
	24	45.7
	30	40.9
	36	37.3
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	37.3
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8" Lag screw w/ 4-1/4" penetration and 3x5" baseplate

Ma (in-lbs) 4820

Load Cases:

200# concentrated load at top of post $M = 200#^*H$ Hmax = Ma/200#

Hmax 24.1

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	48.2
30	38.56
36	<36"
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	48.1
	30	43.0
	36	39.3
	42	36.4
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	50psf	
Post Height (in	n)	Allowable Post Spacing (in)
24		<36"
30		<36"
36		<36"
42		<36"
48		<36"
60		<36"
72		<36"
84		<36"
96		<36"

P=	75psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	<36"
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8" Lag screw w/ 4-1/4" penetration and 6-1/2x6-1/2" baseplate

Ma (in-lbs) 16000

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 80

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	64
72	53.33333333
84	45.71428571
96	40

Allowable post height with respect to post spacing for different wind pressures:

P= 25	sf	
Post Height (in)	Allowable Post Spacing	(in)
24		72.0
30		72.0
36		71.6
42		66.2
48		62.0
60		55.4
72		50.6
84		46.8
96		43.8

P=	50psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	62.0
	30	55.4
	36	50.6
	42	46.8
	48	43.8
	60	39.2
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	50.6
	30	45.3
	36	41.3
	42	38.2
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

2/15/21

System: ARS Detail Description: 3/8" Lag screw w/ 3-1/2" penetration and 6-1/2x6-1/2" baseplate

Ma (in-lbs) 13600

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 68

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	68
60	54.4
72	45.33333333
84	38.85714286
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	66.0
	42	61.1
	48	57.1
	60	51.1
	72	46.6
	84	43.2
	96	40.4

P=	50psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	57.1
	30	51.1
	36	46.6
	42	43.2
	48	40.4
	60	36.1
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	46.6
	30	41.7
	36	38.1
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: 3/8" Lag screw w/ 3" penetration and 6-1/2x6-1/2" baseplate

Ma (in-lbs) 11900

Load Cases:

200# concentrated load at top of post $M = 200\#^*H$ Hmax = Ma/200#Hmax59.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	68
48	59.5
60	47.6
72	39.66666667
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	72.0
	30	67.6
	36	61.7
	42	57.1
	48	53.4
	60	47.8
	72	43.6
	84	40.4
	96	37.8

P=	50psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	53.4
	30	47.8
	36	43.6
	42	40.4
	48	37.8
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	43.6
	30	39.0
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Fascia bracket to wood beam. 3/8" lag screws with 3-3/8" penetration.

Ma (in-lbs) 10600

Load Cases:

 200# concentrated load at top of post

 M = 200#*H

 Hmax = Ma/200#

 Hmax
 53

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	70.66666667
42	60.57142857
48	53
60	42.4
72	<36"
84	<36"
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	71.3
	30	63.8
	36	58.2
	42	53.9
	48	50.4
	60	45.1
	72	41.2
	84	38.1
	96	<36"

P=	50psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	50.4
	30	45.1
	36	41.2
	42	38.1
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	41.2
	30	36.8
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Fascia bracket to uncracked concrete

Ma (in-lbs) 11300

Load Cases:

200# concentrated load at top of post $M = 200\#^*H$ Hmax = Ma/200#Hmax56.5

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	64.57142857
48	56.5
60	45.2
72	37.66666667
84	<36"
96	<36"

Wind Load

M=P/144*TW*H^2/2 Hmax = (2*Ma/(TW*P/144))^(1/2)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	65.9
	36	60.1
	42	55.7
	48	52.1
	60	46.6
	72	42.5
	84	39.4
	96	36.8

P=	50psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	52.1
	30	46.6
	36	42.5
	42	39.4
	48	36.8
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	42.5
	30	38.0
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Fascia bracket to cracked concrete

Ma (in-lbs) 8000

Load Cases:

200# concentrated load at top of post M = 200#*H

Hmax = Ma/200# Hmax 40

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	64
36	53.33333333
42	45.71428571
48	40
60	<36"
72	<36"
84	<36"
96	<36"

Wind Load

I

M=P/144*TW*H^2/2 $Hmax = (2*Ma/(TW*P/144))^{(1/2)}$

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Height	(in)	Allowable Post Spacing (in)
2	4	62.0
3	0	55.4
3	6	50.6
4	2	46.8
4	8	43.8
e	50	39.2
7	2	<36"
8	34	<36"
c	6	<36"

P= 50ps	if
Post Height (in)	Allowable Post Spacing (in)
24	43.8
30	39.2
36	<36"
42	<36"
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	<36"
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Direct post to wood fascia mount. 3/8"x5" lag screws.

Ma (in-lbs) 7800

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 39

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	62.4
36	52
42	44.57142857
48	39
60	<36"
72	<36"
84	<36"
96	<36"

Wind Load

M=P/144*TW*H^2/2 Hmax = (2*Ma/(TW*P/144))^(1/2)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	61.2
	30	54.7
	36	50.0
	42	46.3
	48	43.3
	60	38.7
	72	<36"
	84	<36"
	96	<36"

P=	50psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	43.3
	30	38.7
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	<36"
	30	<36"
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Direct post to wood fascia mount. 3/8" carriage bolts.

Ma (in-lbs) 17400

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 87

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	69.6
72	58
84	49.71428571
96	43.5

Wind Load

M=P/144*TW*H^2/2 Hmax = (2*Ma/(TW*P/144))^(1/2)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	72.0
	36	72.0
	42	69.1
	48	64.6
	60	57.8
	72	52.8
	84	48.8
	96	45.7

P=	50psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	64.6
	30	57.8
	36	52.8
	42	48.8
	48	45.7
	60	40.9
	72	37.3
	84	<36"
	96	<36"

P= 75psf	
Post Height (in)	Allowable Post Spacing (in)
24	52.8
30	47.2
36	43.1
42	39.9
48	37.3
60	<36"
72	<36"
84	<36"
96	<36"

System: ARS Detail Description: Post in core mount

Ma (in-lbs) 12600

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 63

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	63
60	50.4
72	42
84	36
96	<36"

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	69.6
	36	63.5
	42	58.8
	48	55.0
	60	49.2
	72	44.9
	84	41.6
	96	38.9

P=	50psf]
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	55.0
	30	49.2
	36	44.9
	42	41.6
	48	38.9
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	44.9
	30	40.2
	36	36.7
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

System: ARS Detail Description: Stanchion in core mount

Ma (in-lbs) 11400

Load Cases:

200# concentrated load at top of post

M = 200#*H Hmax = Ma/200# Hmax 57

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	65.14285714
48	57
60	45.6
72	38
84	<36"
96	<36"

M=P/144*TW*H^2/2 Hmax = (2*Ma/(TW*P/144))^(1/2)

Allowable post height with respect to post spacing for different wind pressures:

P=	25psf	
Post Hei	ght (in)	Allowable Post Spacing (in)
	24	72.0
	30	66.2
	36	60.4
	42	55.9
	48	52.3
	60	46.8
	72	42.7
	84	39.5
	96	37.0

P=	50psf	
Post Hei	ight (in)	Allowable Post Spacing (in)
	24	52.3
	30	46.8
	36	42.7
	42	39.5
	48	37.0
	60	<36"
	72	<36"
	84	<36"
	96	<36"

P=	75psf	
Post Heigh	nt (in)	Allowable Post Spacing (in)
	24	42.7
	30	38.2
	36	<36"
	42	<36"
	48	<36"
	60	<36"
	72	<36"
	84	<36"
	96	<36"

Connection to base plate

Failure modes → screw tension → screw shear → screw withdrawal

Testing has shown that screw withdrawal doesn't control the base plate to post connection. Thus ADM equation J.5-7 isn't applicable to this application.

Base plate to post screws are AISI 4037 steel alloy fabricated in accordance with SAE J429 Grade 8 and coated with Magni 550 corrosion protection. For 1/4" SAE J429 screw areas provided by manufacturer Root area = 0.0483in² Tension rupture area = 0.0376 in² Screw tension \rightarrow T_y = 0.0483 in² • 110 ksi = 5314 #

V_u = 0.0483* 45ksi =2,174#

 $F_{tU} = 0.0376 \bullet 150 \text{ ksi} = 5,640^{\#}$

Safety factors for screws calculated from SEI/ASCE 8-02 Section 5 LRFD factors - These safety factors were determine appropriate because AISC-360 and the ADM don't include this type of screw but SEI/ASCE 8-02 does.

For yielding SF = $1.6/0.75 = 2.13 \rightarrow 5,314^{\#}/2.13 = 2,495^{\#}$

For fracture SF = $1.6/0.65 = 2.46 \rightarrow 5,640/2.46 = 2,293^{\#}$

Shear strength For fracture SF = $1.6/(0.9*0.75) = 2.37 \rightarrow 2,174/2.37 = 917^{\#}$

Base plate is 5083-H32 or 5052 H34 Aluminum plate, stamped Allowable bending stress for flat plate = 24 ksi (1.5*Fy/1.65) ADM B.3.2.2 Base plate bending stress

 $F_t = 24 \text{ ksi} \rightarrow S_{min} = \frac{5" \cdot 3/8^2}{6} = 0.117 \text{ in}^3$

Base plate allowable moment $M_{all} = 24 \text{ ksi} \cdot 0.117 \text{ in}^3 = 2,812 \text{ ```#}$

 \rightarrow Base plate bending stress

 $T_B = C$

 $M = 0.8125" \bullet T_B \bullet 2$

$$T_{all} = \frac{2,812}{2 \bullet 0.8125} = 1,730^{\#}$$

Maximum post moment for base plate strength $M_{all} = 2 \cdot 1730 \cdot 4.375" = 15,142$ #"

Limiting factor = screws to post $M_{ult} = 2 \cdot 5,314^{\#} \cdot 2.28^{"} = 24,232^{\#"}$ $M_{all} = 2 \cdot 2,293^{\#} \cdot 2.28^{"} = 10,456^{"\#}$

Testing and experience has shown that screw tension rupture is the controlling failure mode.

Interaction of shear and tension on the screw isn't required as two screws on the compression face will take all shear so the tension screws don't carry shear loads.

Alternatively if the shear is distributed evenly to all screws the shear stress won't reduce the allowable tension load until it exceeds 20% of the strength: V = 0.2*4*917# = 734#

As this will greatly exceed the allowable load on the post the interaction need not be considered.

As the screws are countersunk in the base plate the base plate flexure doesn't create significant prying action on the screw heads as the plate may pivot around the screw head like a socket joint. Therefore prying action on the baseplate screws may be ignored.

CR LAURENCE ALUMINUM RAIL SYSTEM

SIX SCREW CONNECTION TO BASE PLATE

Screws are the same as for the standard 4 screw connection.

Screw embedment length into the screw slots is adequate to develop the full screw tension strength.

Use same screw tension strength as used for the four screw connection:

 $T_a = 2,293\#$ per screw $V_a = 917\#$ per screw

 $V_{des} = 6*917 = 5,502\#$ limiting shear load on post so that screw shear stress doesn't reduce the allowable tension: $V_{0.2} = 0.2*5,502\# = 1,100\#$

Base plate thickness and strength same as for standard post.

Allowable moment on the posts based on screw tension strength:

Strong axis bending - $M_{base} = 3 \text{ screws}*2,293\#2.28" = 15,684"\# < 19,479"\#$ Doesn't develop full post strength.

Weak axis bending - $M_{\text{base}} = 2 \text{ screws}*2,293\#2.28"+2 \text{ screws}*0.5*2,293\#2.28"/2 = 13,070"\# \le 17,560"#"# 6 \text{ screw connection won't develop the full post strength for weak axis bending.}$

LIMITING POST MOMENTS FOR SIX SCREW CONNECTION: STRONG AXIS BENDING $M_A = 15,684$ "# = 1,307"# WEAK AXIS BENDING $M_A = 13,070$ "# = 1,089"#

Note that the 135° post only has four screw slots. However, as noted in the 135° post strength calculations, the loading to the 135° corner post is reduced by approximately 17%. Required strength for 135° post to not limit spacing = 0.833*15,700"# = 13,100"# > 10,500"#. The presence of 135° posts screwed to baseplates will limit post spacing when other posts used the six screw pattern. Use M_a = 10,500"#/0.833 = 12,600"# for determining allowable post spacing.

Testing has demonstrated that screw

withdrawal doesn't occur for the post alloy and screw embedment length

Base plate to post screws are AISI 4037 steel alloy fabricated in accordance with SAE J429 Grade 8 and coated with Magni 550 corrosion protection.

Screw tension \rightarrow T_y = 0.0483in² • 110 ksi = 5314 # V_u = 0.0483* 45ksi =2,174#

 $F_{tU} = 0.0376 \bullet 150 \text{ ksi} = 5640^{\#}$

Safety factors for screws calculated from SEI/ASCE 8-02 Section 5 LRFD factors. These safety factors were determine appropriate because AISC-360 and the ADM don't include this type of screw but SEI/ASCE 8-02 does.

For yielding SF = $1.6/0.75 = 2.13 \rightarrow 5,314^{\#}/2.13 = 2.495^{\#}$

For fracture SF = $1.6/(0.9*0.75) = 2.37 \rightarrow 5,640/2.37$ =2,380[#]

Shear strength SF = 1.6/0.65 = 2.46 $V_a = V_u/SF = 2.174^{\#}/2.46 = 884^{\#}$

Base plate bending stress

 $F_t = 24 \text{ ksi} \rightarrow S_{min} = \frac{6.5" \cdot 3/8^2}{6} = 0.152 \text{ in}^3$

6-1/2" Square Base Plates Cont.

Base plate allowable moment $M_{all} = 24 \text{ ksi} \cdot 0.152 \text{ in}^3 = 3,648 \text{ ``#}$ \rightarrow Base plate bending stress $T_B = C$ M = 5/8'' $\cdot T_B \cdot 2 = 3,648 \text{#''}$

 $T_{all} = \underline{3,648\#"}_{2 \bullet 0.625} = 2,918^{\#}$

Maximum allowable post moment for base plate strength $M_{all} = 2 \cdot 2,918 \cdot 5.75'' = 33,562^{\#"}$

Limiting factor = screws to post $M_{ult} = 2 \cdot 5,314^{\#} \cdot 3.69^{"} = 39,217^{\#"}$ $M_{all} = 2 \cdot 2,380^{\#} \cdot 3.69^{"} = 17,264^{\#"}$

As the screws are countersunk in the base plate the base plate flexure doesn't create significant prying action on the screw heads as the plate may pivot around the screw head like a socket joint. Therefore prying action on the baseplate screws may be ignored.

3X5" BASEPLATE

The 3x5" baseplate uses the same screw pattern as the 5x5 baseplate so the strength of the connection to the post is the same. Prying loading on the heel side anchors may be larger however. Allowable moments on the 3x5" baseplate will be lower because of the reduced effective distance between the tension and compression centroids.

TRIM LINE POST BASEPLATE

Uses same screws as the 2-3/8" square post.

Strong axis bending -M_{base} = 2 screws*2,293#*2.28"+ 2 screws*0.5*2,293#*2.28"/2 = 13,100"#

Weak axis bending -M_{base} = 3 screws*2,293#*0.895" = 6,160"#

Anchorage to the structure is the same as for the 2-3/8" square posts.

Hilti 3/8"x4" Kwik HUS-EZ

Base plate mounted to concrete with Hilti 3/8"x4" KH-EZ concrete anchors. Anchor strength based on ESR-3027 AND ACI318. Minimum conditions used for the calculations: $f'_c \ge 3,000$ psi; edge distance =4.1875" spacing = 3.75" $h_{nom} = 4"-3/8" = 3.625"$ $h_{ef} = 2.5$ " For concrete breakout strength: $N_{cb} = [A_{Ncg}/A_{Nco}]\phi_{ed,N}\phi_{c,N}\phi_{cp,N}N_b$ $A_{Ncg} = (1.5*2.5"*2+3.75")*(1.5*2.5"*2) = 84.38 \text{ in}^2$ for 2 tension anchors $A_{Nco} = 9 * 2.5''^2 = 56.25in^2$ $C_{ac} = 3.75$ " $\varphi_{\rm ed,N} = 1.0$ $\varphi_{c.N} = 1.0$ $k_{uncr} = 24$ $k_{cr} = 17$ $\varphi_{cp,N} = 1$ $N_{b} = 24*1.0*\sqrt{3000*2.5^{1.5}} = 5,200\#$ for uncracked concrete $N_b = 17*1.0*\sqrt{3000*2.5^{1.5}} = 3,680\#$ for cracked concrete $N_{cb} = 84.38/56.25*1.0*1.0*1.0*5,200\# = 7,800\#$ for uncracked concrete $N_{cb} = 84.38/56.25*1.0*1.0*1.0*3,680\# = 5,520\#$ for cracked concrete Determine allowable tension load on anchor pair assuming an average load factor of 1.6. $T_a = 0.65 * 7,800 \# / 1.6 = 3,170 \#$ $T_a = 0.65 \times 5,520 \# / 1.6 = 2,240 \#$ Anchor steel strength: $T_a = 2*0.65*10.335\#/1.6 = 8.400\#$ (Does not control) Per ESR 3027, pullout strength does not control. Find moment strength: a = 3,170 # / (0.85 * 3000 psi * 5") = 0.249" for uncracked concrete a = 2,240 # / (0.85 * 3000 psi * 5'') = 0.176'' for cracked concrete 5"x5" baseplate: $M_a = 3,170 \# (4.375" - 0.249"/2) = 13,500" \#$ for uncracked concrete $M_a = 2,240 \# (4.375" - 0.176"/2) = 9,600" \#$ for cracked concrete 6-1/2"x6-1/2" baseplate: $M_a = 3,170 \# (5.75" - 0.249"/2) = 17,800" \#$ for uncracked concrete $M_a = 2,240 \# (5.75" - 0.176"/2) = 12,700" \#$ for cracked concrete 3"x5" baseplate: $M_a = 3,170 # (2.375" - 0.249"/2) = 7,130" #$ for uncracked concrete $M_a = 2,240 \# (2.375" - 0.176"/2) = 5,120" \#$ for cracked concrete Check shear strength - Concrete breakout strength in shear: $V_{cb} = A_{vc}/A_{vco}(\varphi_{ed,V}\varphi_{c,V}\varphi_{h,V}V_b)$ $A_{vc} = (1.5*4.19"*2+3.75")*(4.19"*1.5) = 102.6in^2$

$$\begin{split} A_{vco} &= 4.5(c_{a1})^2 = 4.5(4.19)^2 = 79.00 \text{in}^2 \\ \phi_{ed,V} &= 1.0 \text{ (affected by only one edge)} \\ \phi_{c,V} &= 1.0 \text{ cracked concrete} \\ V_b &= [7(l_e/d_a)^{0.2} \sqrt{d_a}] \lambda \sqrt{f'} c(c_{a1})^{1.5} = [7(2.5/0.375)^{0.2} \sqrt{0.375}] 1.0 \sqrt{3000} (4.19)^{1.5} = 2,940 \# \\ V_{cb} &= 102.6/79.00^* 1.0^* 1.0^* 1.0^* 2,940 \# = 3,820 \# \\ V_a &= 0.7^* 3,820 \# / 1.6 = 1,670 \# \\ \text{Steel shear strength} = 5,185 \# 2 = 10,400 \# \\ \text{Allowable shear strength} \\ \emptyset V_N / 1.6 &= 0.60^* 10,400 \# / 1.6 = 3,900 \# \\ \text{Controlling allowable shear strength} = 1,670 \# \end{split}$$

Note that the concrete breakout strength in shear is based off of the anchors closest to the edge which would not have tension loading if the force is towards the edge. It can be assumed the toe side anchors will resist all the shear and the heel side anchors will resist all the tension. Therefore interaction of shear and tension is not a concern.

Hilti 3/8"x3-3/4" Stainless Steel Kwikbolt - TZ

Base plate mounted to concrete with Hilti 3/4"x3-3/4" KB-TZ concrete anchors. Anchor strength based on ESR-1917 and ACI 318. Minimum conditions used for the calculations: $f'_c \ge 3,000$ psi; edge distance =2-5/8" spacing = 3.75" $h_{nom} = 3-1/16$ " $h_{ef} = 2.75$ " For concrete breakout strength: $N_{cb} = [A_{Ncg}/A_{Nco}]\phi_{ed,N}\phi_{c,N}\phi_{cp,N}N_b$ $A_{Ncg} = (1.5 \times 2.75 \times 2 + 3.75) \times (1.5 \times 2.75 \times 2.625) = 81.0 \text{ in}^2$ for 2 tension anchors $A_{Nco} = 9*2.75^{2} = 68.1 \text{ in}^2$ $C_{ac} = 4.125$ " $\varphi_{ed,N} = 0.7 + 0.3 \times 2.625'' / (1.5 \times 2.75'') = 0.89$ $\varphi_{ec,N} = 1$ $k_{uncr} = 24$ $k_{cr} = 17$ $\varphi_{cp,N} = 1$ for cracked concrete $\varphi_{cp,N} = C_{ac}/(1.5_{ef}) \max = 4.125/(1.5*2.75) = 1$ $N_{\rm b} = 24*1.0*\sqrt{3000*2.75^{1.5}} = 5,990\#$ for uncracked concrete $N_{\rm b} = 17*1.0*\sqrt{3000*2.75^{1.5}} = 4,250\#$ for cracked concrete $N_{cb} = 81.0/68.1 \times 0.89 \times 1.0 \times 1.0 \times 5,990 \# = 6,340 \#$ for uncracked concrete $N_{cb} = 81.0/68.1 \times 0.89 \times 1.0 \times 1.0 \times 4,250 \# = 4,500 \#$ for cracked concrete Determine allowable tension load on anchor pair assuming an average load factor of 1.6. $T_a = 0.65 \times 6,340 \# / 1.6 = 2,580 \#$ for uncracked concrete $T_a = 0.65*4,500\#/1.6 = 1,830\#$ for cracked concrete Anchor pullout strength: $T_a = 2*0.65*4,110\#/1.6 = 3,340\#$ for uncracked concrete (Does not control) $T_a = 2*0.65*3,160\#/1.6 = 2,570\#$ for cracked concrete (Does not control) Find moment strength: a = 3,340 # / (0.85*3000 psi*5") = 0.262" for uncracked concrete a = 2,570 #/(0.85*3000 psi*5") = 0.202" for cracked concrete 5"x5" baseplate: $M_a = 3,340 \# (4.375" - 0.262"/2) = 14,200" \#$ for uncracked concrete $M_a = 2,570 \# (4.375" - 0.202"/2) = 11,000" \#$ for cracked concrete 6-1/2"x6-1/2" baseplate: $M_a = 3,340 \# (5.75" - 0.262"/2) = 18,800" \#$ for uncracked concrete $M_a = 2,570 \# (5.75" - 0.202"/2) = 14,500" \#$ for cracked concrete 3"x5" baseplate: $M_a = 3,340 \# (2.375" - 0.262"/2) = 7,490" \#$ for uncracked concrete $M_a = 2,570 \# (2.375" - 0.202"/2) = 5,840" \#$ for cracked concrete Check shear strength - Concrete breakout strength in shear:

$$\begin{split} V_{cb} &= A_{vc}/A_{vco}(\phi_{ed,V}\phi_{c,V}\phi_{h,V}V_{b} \\ A_{vc} &= (1.5^{*}2.625^{**}2+3.75^{**})^{*}(2.625^{**}1.5) = 45.77in^{2} \\ A_{vco} &= 4.5(c_{a1})^{2} = 4.5(2.625^{**})^{2} = 31.01in^{2} \\ \phi_{ed,V} &= 1.0 \text{ (affected by only one edge)} \\ \phi_{c,V} &= 1.0 \text{ cracked concrete} \\ V_{b} &= [7(l_{c}/d_{a})^{0.2}\sqrt{d_{a}}]\lambda\sqrt{f'}c(c_{a1})^{1.5} = [7(2.75/0.375)^{0.2}\sqrt{0.375}]1.0\sqrt{3000}(2.625)^{1.5} = 1,490\# \\ V_{cb} &= 45.77/31.01^{*}1.0^{*}1.0^{*}1.0^{*}1,490\# = 2,200\# \\ V_{a} &= 0.7^{*}2,200\#/1.6 = 963\# \\ \text{Steel shear strength} &= 3,595\#^{*}2 = 7,190\# \\ \text{Allowable shear strength} \\ \emptyset V_{N}/1.6 &= 0.65^{*}7,190\#/1.6 = 2,920\# \\ \text{Controlling allowable shear strength} &= 963\# \end{split}$$

Note that the concrete breakout strength in shear is based off of the anchors closest to the edge which would not have tension loading if the force is towards the edge. It can be assumed the toe side anchors will resist all the shear and the heel side anchors will resist all the tension. Therefore interaction of shear and tension is not a concern.

RAISED BASEPLATE DESIGN AND ANCHORAGE -

Baseplates are raised up and bear on nuts installed on embedded threaded rod. Guard rail Height: 42"

loading: 200# concentrated load or

50 plf uniform load on top rail or

25 psf distributed load on area or

25 psf = 80 mph exp C wind load:

Design moment on posts: $M_1 = 42"*200\# = 8,400"\#$ $M_1 = 42"*50plf*5ft = 10,500"\#$ Mw = 3.5'*5'*25psf*42"/2 = 9,188"#

Design anchorage for 10,500"# moment. Design shear = 438# (wind)

Bolt tension for typical design T = 10,500/(2*3.75)=1,400#

Anchor to concrete: 1/2" x 5" all-thread embedment depth = 3.5" and 4,000 psi concrete strength. Select anchor for: Adjustment for anchor spacing = 3.75" Adjustment for edge distance = 2-1/8" T' = 2,062#

Check base plate strength: Bending is biaxial because it sits on bearing nuts: M = (3.75"-2.28")/ $2*1,400\#2*\sqrt{2} = 2,910"\#$

Bending stress in plate The effective width at the post screws: 3.86" $S = 2*3.86"*0.375^2/6 = 0.181 \text{ in}^3$ $f_b = 2,910/0.181 = 16,080 \text{ psi}$ Base plate is 5083-H32 or 5052 H34 Aluminum plate, stamped Allowable bending stress for flat plate = 24 ksi (1.5*Fy/1.65) ADM B.3.2.2

Bearing on nut:

Area = $(0.8^2 - 0.5625^2)\pi = 1.0 \text{ in}^2$ f_B = 1,400#/1.0 = 1,400 psi - Okay Screws to post – okay based on standard base plate design Posts okay based on standard post design

Offset base plate will have same allowable loads as the standard base plate. Anchors to concrete are same as for standard base plate.

2/15/21

BASE PLATE MOUNTED TO WOOD

 $P_a = 0.0552in^{2*}60ksi/2 = 1,660\#$

Required penetration to develop strength of screw = 1,660#389pli = 4.27".

Check anchorage strength for 4-1/4", 2-1/2" and 1-1/2" screw penetration. Assume wood bearing strength > 360psi This includes Hem-Fir, Douglas-Fir, Southern Pine and APA wood structural panels. Bearing length, a = 2*389 pli*p/(360 psi*5") = 0.432 p5"x5" baseplate: For 4-1/4" embedment, $M_a = 2*389 \text{pli}*4.25$ "*(4.375"-0.432*4.25"/2) = 11,400"# For 3-1/2 embedment, $M_a = 2*389 \text{pli}*3.5"*(4.375"-0.432*3.5"/2) = 9,860"#$ For 3" embedment, $M_a = 2*389 \text{pli}*3"*(4.375"-0.432*3"/2) = 8,700"#$ 6-1/2"x6-1/2" baseplate: For 4-1/4" embedment, $M_a = 2*389$ pli*4.25"*(5.75"-0.432*4.25"/2) = 16,000"# For 3-1/2 embedment, $M_a = 2*389 \text{pli}*3.5"*(5.75"-0.432*3.5"/2) = 13,600"#$ For 3" embedment, $M_a = 2*389 \text{pli}*3"*(5.75"-0.432*3"/2) = 11,900"#$ 3"x5" baseplate: For 4-1/4" embedment, $M_a = 2*389 \text{pli}*4.25"*(2.375"-0.432*4.25"/2) = 4,820"#$ For 3-1/2 embedment, $M_a = 2*389$ pli*3.5"*(2.375"-0.432*3.5"/2) = 4,410"# For 3" embedment, $M_a = 2*389 \text{pli}*3"*(2.375"-0.432*3"/2) = 4,030"#$

Pl

Core Mounted Posts

Design as 2-way shear: Three sided breakout surface Length of perpendicular break = $2.375"+3*C_{a1}$ Length of parallel breaks = $2"+1.5C_{a1}$ $b_0= 2.375"+3*C_{a1}+2*(2"+1.5C_{a1})$ $\beta = (2.375"+3*C_{a1})/(2"+1.5C_{a1})$ $V_{n,min}=V*LF/\emptyset=5093\#*1.6/0.75=10,865\#$

λ	f'c	β	αs	d	bo
1	3000	1.70922661	30	2.3923629	20.7291774

	vc	
Least of:	4λ√f'c	219.089023
	(2+4/β)λ√f'c	237.72472
	$(2+\alpha_s d/b_o)\lambda v f'c$	299.183169
	v _c db _o	10865.0004

 $C_{a,min}$ =2.39" measured from the face of the post

=2.39"+2.375"/2=3.58" measured from the center of the post The core mount develops 12,600"# when the post is centered 3-5/8" from the edge of the concrete.

0.1875

FASCIA BRACKET

Allowable stresses ADM Table 2-21 6063-T6 Aluminum

 $F_t/\Omega = 15.2$ ksi, uniform tension $F/\Omega = 22.7$ ksi, flat element bending $F/\Omega = 30.8$ ksi, hole bearing

Section Properties Area: 2.78 sq in Perim: 28.99 in I_{xx} : 3.913 in⁴ I_{yy} : 5.453 in⁴ C_{xx} : 1.975 in/1.353 in C_{yy} : 2.954 in S_{xx} : 1.981 in³ front S_{xx} : 2.892 in³ S_{yy} : 1.846 in³

Allowable moment on bracket: $Ma = F_t * S$ 0.375 $Ma_{xx} = 15.2 \text{ ksi}*1.981 \text{ in}^3 = 30,111"\#$ - Outward moment $Ma_{vv} = 15.2 \text{ ksi}*1.846 \text{ in}^3 = 28,059"\#$ - Sidewise moment 00. Flange bending strength Determine maximum allowable bolt load: APPROX YIELD LINE Tributary flange 4.00 $b_f = 8t = 8*0.1875 = 1.5$ " each side of hole $b_t = 1.5"+1"+0.5"+1.75" = 4.75"$ S= 4.75"*0.1875²/6=0.0278 in³ 4.50 $Ma_f = 0.0278 \text{ in}^{3*}22.7 \text{ ksi} = 631"#$ 0.375 Allowable bolt tension 8 $T = Ma_f / 0.375 = 1.683 \#$ 3/8" bolt standard washer For Heavy washer $T=Ma_f/0.1875=3,366\#$ 8 Typical Installation – Post load = 250# at 42" AFF – Top hole is 2" below finish floor $T_{up} = [250\#(42"+7")/5"]/2 \text{ bolts} = 1,225\#$ tension $T_{bot} = [250\#(42"+1")/5"]/2 \text{ bolts} = 1,075\#$ 1.00tension For lag screws into beam face: - 3/8" lag screw - withdrawal strength per NDS Table 12.2A Wood species $-G \ge 0.43 - W = 243$ #/in DEAD LOAD ALUMINUM Adjustments $-C_d = 1.6$ No other adjustments required. W' = 243#/in*1.6 = 389 #/in The minimum embedment is: $l_e = 1,225\#/389\#/in = 3.15": +7/32"$ for tip = 3.37"

253-858-0855/Fax 253-858-0856 elrobison@narrows.com

When penetration = 3-3/8", $M_a = 250\#*42$ " = 10,600"# where moment is measured at the floor line.

Loads, except dead load and reactions are reversible

Check for fascia bracket to concrete condition. Use 3/8"x3-3/4" Hilti KB-TZ anchors. $h_{nom} = 3-1/16$ ", $h_{ef} = 2.75$ "

Recall, the Hilti KB-TZ with 2-3/4" effective embedment were analyzed as part of the baseplate anchorage detail. In this detail, the edge distance is reduced to 2-1/2" and the spacing is increased to 4-1/2".

This changes A_{Ncg} to (1.5*2.75"*2+4.5")*(1.5*2.75"+2.5") = 84.47 in² and $\varphi_{ed,N}$ to 0.7+0.3*2.5"/(1.5*2.75") = 0.88. So, $N_{cb} = 84.47/68.1*0.88*1.0*1.0*5,990\# = 6,540\#$ for uncracked concrete $N_{cb} = 84.47/68.1*0.88*1.0*1.0*4,250\# = 4,640\#$ for cracked concrete Determine allowable tension load on anchor pair assuming an average load factor of 1.6. $T_a = 0.65*6,540\#/1.6 = 2,660\#$ for uncracked concrete $T_a = 0.65*4,640\#/1.6 = 1,890\#$ for cracked concrete Anchor pullout strength: $T_a_{,} = 2*0.65*4,110\#/1.6 = 3,340\#$ for uncracked concrete (Does not control) $T_a = 2*0.65*3,160\#/1.6 = 2,570\#$ for cracked concrete (Does not control) For 42" tall guard and 60" post spacing, $T_{max} = 250\#*(42"+1.5"+6")/5" = 2,480\# < 2,660\#$ but > 1,890#

OK for uncracked concrete but not for cracked concrete.

Max spacing for cracked concrete = $60^{*}1,890\#/2,480\# = 45.7^{*}$.

Find allowable moment measured at floor line:

 $M_a = 2,660\#/2,480\#(250\#*42") = 11,300"\#$ for uncracked concrete

 $M_a = 1,890\#/2,480\#(250\#42") = 8,000"\#$ for cracked concrete

When used at 42" rail height and at spacings 48" or less. The maximum moment reaction from the 200# live load is 7,360"# < 8,000"# OK.

90° Corner Fascia Brackets

Loading from each direction is resisted by the adjacent anchors in tension. This bracket must be used as part of a corner rail with the welded top rail. This allows the corner post to braced and the bracket must only take half the load in each direction. Therefore, the anchors will receive the same or lower loading as the intermediate post brackets and are OK if the intermediate bracket anchors are. This is true for either the outside or inside corners.

135° Fascia Brackets

Similar to the 90° corner bracket, each bracket leg can be assumed to be resisting the load tributary to the post from the same side. Therefore, the anchorage loading is the same as for the intermediate post fascia bracket without considering bracing from adjacent posts. Therefore, once bracing to adjacent posts is considered, the loading to the anchors is actually less than the loading to the intermediate fascia bracket anchors.

Check weld at front of fascia:

Weld rupture, $T_a = 0.85*0.6*35$ ksi*0.707*0.25"/1.95 = 1,620pli Base metal, 0.25"*11.6ksi/1.95 = 1,490pli (controls) Post load resisted = 2*1,490pli*sin(45°) = 2,110pli

 $M_a = 2,110 \text{pli}*3^{**}6^{*'}/2 = 19,000^{*'}\#$

The fasteners will be the limiting failure mode.

Weld strength and loading are the same for either the inside or outside brackets.

FASCIA MOUNTED POST

Commercial application – Load = 200# or 50 plf any direction on top rail - 4' allowable spacing.

For 42" rail height and 4' on center post spacing:

P = 200# or 50plf*4 = 200# $M_{deck} = 42"*200plf = 8,400"#$ Load from glass infill lites: Wind = 25 psf $M_{deck} = 3.5^{*}25psf^{*}42^{*}/2^{*}4^{\circ}o.c. = 7,350^{*}\#$ DL = 4'*(3 psf*3'+3.5plf)+10# = 60# each post (vertical load)

Typical anchor to wood: 3/8" lag screw. Withdrawal strength of the lags from National Design Specification For Wood Construction (NDS) 2015 Edition Table 12.2A.

For Doug-Fir Larch or equal, G = 0.50W = 305#/in of thread penetration. $C_D = 1.6$ for guardrail live loads or wind loads. $W' = WC_D = 305 pli^* 1.6 = 488 pli$ Lag screw design strength -3/8" x 5" lag, $l_m = 5$ "-2.375"-7/32" = 2.4" $T_b = 488 * 2.4$ " = 1,171# $Z_{ll} = 220\#$ per lag, (horizontal load) NDS Table 12K Z'u = 220#*1.6 = 352#

Anchors to be minimum of 7" center to center and post shall extend 1-1/2" below bottom anchor.

From $\sum M$ about end M = (8.5"*T+1.5"*1.5/8.5*T) = 8.76"TAllowable post moment $M_a=1,171\#8.76''=10,300''\#$ EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Allowable moment measured at the floor line, $M_a = 10,300$ "#-250#*10" = 7,800"#

When used at 42" rail height and at spacings 48" or less. The maximum moment reaction from the 200# live load is 7,360"# < 7,800"# OK.

For 3/8" carriage bolts: Allowable load per bolt = $0.0775in^{2*}60ksi/2$ = 2,330# For bearing on 2" square bearing plate – area = 3.8 in² F_{c,perp}=405 psi for Hem-fir (Doug Fir and Southern Pine are stronger) C_b=(2"+.375)/2"=1.19 P_b = 3.8 in²*1.19*405*1.6 = 2,930# M_a = 2,330#*8.76" = 20,400"# (exceeds post strength) Allowable moment measured at the floor line, M_a = 20,400"#-300#*10" = 17,400"#

For vertical load lag capacity is:

2 lags*224# = 448#/post for D+L 2 lags*0.9*140# = 252#/post for D

For corner posts:

For **interior corners** there are four lags, two each way. Two lags will act in withdrawal and two will be in shear: Okay be inference from running posts.

MIN

و!

4"

E

-

STANCHION MOUNT

Part PST5: 2"x1-1/2"x 1/8" 304 1/4 Hard Stainless steel tube Edge distance same as for core mounted posts. Stanchion Strength $F_{vc} = 50 \text{ ksi}$ $Z_{yy} = 0.543 \text{ in}^3$ 2) #10 STS SCREWS $M_a = 50 ksi * 0.543 in^3 / 1.67 = 16,300" \#$

Post may be attached to stanchion with screws or by grouting by pouring self-consolidating grout into top of post to cover the stanchion.

Grout bond strength to stanchion:

A_{surface} $\sqrt{f'c} = 7"*4"*\sqrt{8,000}$ psi = 2,500# (ignores mechanical bond) (similar to ACI318 chapter 12 development length provisions using the fundamental bond between the concrete and metal without adjustment for deformations)

for 200# maximum uplift the safety factor against pulling out:

SF = 2,500 # / 200 # = 12.5 > 3.0 therefore okay.

The very high projected safety factor indicates that a more robust determination of the bond strength isn't warranted.

Core mount strength is calculated by the same method shown for the post core mount:

inputs					
Core Width (in)	Stanchion Width (in)	Concrete Strength		Edge Distance	Embedment
b _c (in)	b _s (in)	f' _c (psi)	λ	C ₁ (in)	d (in)
4	1.5	3000	1	3.625	4

Edge breakout calcs

Incusto

w (in)	h (in)		β	b _o (in)	αs	4λvf' _c (psi)	(2+4/β)λvf	" _c (psi)
7.625		3.8125	2.	2 15.25	30	219.08902	3	219.089023
			В	earing Calcs				Strength
			0	.65*0.85f' _c /1.6	$(b_c-b_s)/2+b_s$	(b _c -b _s)/4+d/2 f	ab _b h _b	$Min(P_a)*d/2$
$(2+\alpha_sC_1/b_0)\lambda v f'_c$ (psi)	V _c C ₁ b ₀	P _a (lbs)	fa	(psi)	bb (in)	hb (in) F	a (lbs)	M _a (in-lbs)
500.133548	34 12111.5151	567	7.272681	1035.9375	2.75	2.625	8287.5	11354.5454

 $M_a = 11,400$ "# when edge distance = 3-5/8" and embedment = 4".

CORE POCKET FILL

ANCHOR CEMENT,

WITH BONSAL

NON-SHRINK, NON-METALLIC

GROUT

2/15/21

Base Plate Mounted Stanchions

2"x1-1/2"x 1/8" A304 SS Tube Stanchion Strength $Z_{yy} = (2^{2*}1.5 - 1.75^{2*}1.25)/4 = 0.362 \text{ in}^3$ $F_u = 75 \text{ksi}$ $M_a = 0.362 \text{in}^{3*}75 \text{ksi}/2 = 13,600$ "#

Surface Mount Stanchion

Weld to base plate : 1/8" groove weld with reinforcing fillet weld built out to bottom face of base plate.

Minimum effective throat = $(0.125^{2}+0.125^{2})^{1/2} = 0.177^{2}$

Weld strength assumes 308L filler and loading normal to the weld's axis.

Weld rupture, $R_n/\Omega = 0.177$ "*0.6*82ksi/1.88 = 4,630pli (controls)

Base metal, $R_n/\Omega = 0.125$ "*75ksi/2 = 4,690pli

 $I_{w,y} = 2 * 2 * 0.75 * 2 + 2 * 1.5 * 3/12 = 2.81 in^{4/in}$

 $M_a = 4,630 \text{pli}*2.81 \text{in}^4/\text{in}/0.75^\circ = 17,300^\circ \#$ (Develops full strength of stanchion)

Since the 3/8" baseplate stanchion weld develops the full strength of the stanchion, the 1/2" baseplate weld also develops the full strength of the stanchion by inspection.

ALUMINUM STANCHION EXTRUSION

Extrusion screwed to an aluminum base plate using 6 screws and post installed over stanchion.

-Area 1.1428 in² $I_{xx} = 0.4659 \text{ in}^4$ $I_{yy} = 0.752 \text{ in}^4$ $S_{xx} = 0.570 \text{ in}^3$ $S_{yy} = 0.727 \text{ in}^3$ $Z_{xx} = 0.707 \text{ in}^3$ $r_{xx} = 0.573 \text{ in}$ $r_{yy} = 0.728 \text{ in}$ $Z_{xx} = 0.707 \text{ in}^3$

Allowable moment = Mn/Ω per 2015 ADM M_n = lesser of: 1.5SF_y or ZF_y and $M_{nu} = ZF_u/k_t$: $\Omega = 1.65$ for yield state, or 1.95 for rupture - M_{nu} will control as $F_u \le 1.18$ F_y $F_y = 35$ ksi $F_u = 38$ ksi Strong axis bending (typically perpendicular to rail) $M_{all} = 0.851 \cdot 38^{ksi}/1.95 = 16,584$ #" = 1,382.0'# (Rupture controls) Weak axis bending (typically parallel to rail) $M_{all} = 0.707 \cdot 38^{ksi}/1.95 = 13,777$ #" = 1,148.1'# (Rupture controls)

Strength of screws - same screws as used for base plates to posts-Base plate pull over = [(0.27+1.45*0.375/0.25)*0.25*0.375*30ksi]/3 = 2,293#Allowable moments on screwed base plate - $M_{ay} = 3screws*2,293"#*(1.797") = 12,362"#$ For strong axis bending (90° to post's strong axis) $M_{ax} = 2screws*2,293"#*(1.294+0.762) = 9,429"#$ For weak axis bending

Or when welded to baseplate:

 $M_a = 24 \text{ksi}/1.95 \text{*}0.851 \text{in}^3 = 10,500$ "# (strong axis) $M_a = 24 \text{ksi}/1.95 \text{*}0.707 \text{in}^3 = 8,700$ "# (weak axis)

TOP RAILS

Top rails connect the tops of post together and provide a continuous barrier between posts. The 200# concentrated load and 50plf live load are applied directly to the top rail. Note for 72" max post spacing the maximum post moment is caused by the 200# concentrated load mid span:

Maximum top rail moment caused by live loading, $M_{max} = 200\#*72"/4 = 3,600"\#$ Moment caused by 50plf live load, $M_{50plf} = 50plf/12*72"^2/8 = 2,700"\# < 3,600"\#$ (Does not control)

Therefore, allowable rail span = $M_a 4/200 \# = M_a/50 \#$

Note that every rail is weakest under vertical loading. See the table below for allow post spacing based on top rail bending strength:

Top Rail Allowable Spans:				
Top Rail		Ma (in-lbs)	Allowable Span (in)	
	100	3750	72	
	200	2640	52.8	
200X		1790	35.8	
	300	6430	72	
	320	3000	60	
	350	4300	72	
	400	5130	72	
	500	2600	52	

Top rails may receive significant wind loading when glass infill is used. However, the bottom rail is much weaker and will receive the same loading. Therefore, none of the top rails shown will limit wind loading below that shown for the bottom rail. Note that the allowable span of the 200, 200X, 320 and 500 is limited by the vertical bending strength. When pickets attach to the top rail, load is shared with the bottom rail.

Check bending of 200 and 200X top rail when load can be shared with the picket bottom rail. For series 200 top rail: $I_{x,200} = 0.241$ in⁴ $I_{x,bottom} = 0.119$ in⁴ Load share to top rail = 0.241in⁴/(0.241in⁴+ 0.119in⁴) = 0.669 $M_a = 2,640$ "#/0.669 = 3,950"# Allowable span > 72" EDWARD C. ROBISON, PE

> 10012 Creviston Dr NW Gig Harbor, WA 98329

253-858-0855/Fax 253-858-0856 elrobison@narrows.com

For series 200X top rail: $I_{x,200} = 0.132in^4$ $I_{x,bottom} = 0.119in^4$ Load share to top rail = $0.132in^4/(0.132in^4 + 0.119in^4) = 0.526$ $M_a = 1,790''#/0.526 = 3,400''#$ Allowable span = 3,400''#/50 = 68''.

For series 320 top rail: $I_{x,200} = 0.118in^4$ $I_{x,bottom} = 0.119in^4$ Load share to top rail = 0.118in⁴/(0.118in⁴+ 0.119in⁴) = 0.498 $M_a = 1,790"\#/0.498 = 3,590"\#$ Allowable span = 3,590"#/50 = 72".

For series 500 top rail: $I_{x,200} = 0.257in^4$ $I_{x,bottom} = 0.119in^4$ Load share to top rail = $0.257in^4/(0.257in^4 + 0.119in^4) = 0.684$ $M_a = 2,600''#/0.684 = 3,800''#$ Allowable span = 3,800''#/50 > 72''.

For wood composite: $I_{x,wood} = 0.984in^4$ $I_{x,bottom} = 0.119in^4$ Load share to top rail = 1.6/10.1*0.984in⁴/(1.6/10.1*0.984in⁴+ 0.119in⁴) = 0.567 $M_{a,bottom} = 1,770''#/0.433 = 4,090''#$ $M_{a,wood} = 2,510''#/0.567 = 4,430''#$ Allowable span = 4,090''#/50 > 72''.

The preceding calculations show that when pickets and the picket bottom rail are used, only the 200X top rail has an allowable post spacing less than 72".

NOTE ON SHEAR:

The maximum shear in the top rail spanning 72" is 150#. When used in a simple span the the maximum shear corresponds to the minimum moment. When used in multiple spans the maximum shear and maximum moment will coincide with the post. Since the allowable spans shown are based on simple spans the reduction in peak moment at the post will offset the added stress from the shear. Additionally all top rails will have web elements where the bending stress is minimal which will effectively resist the shear loads.

Web area required to resist 150 lb shear load:

 $A_w = 150\#/(9.1 \text{ ksi}) = 0.0165 \text{ in}^2$ For 6063-T6 assumes $\lambda_1 < 16.1$ which applies to all top rails For the minimum 0.08" thickness this requires under 1/4" of web. Thus further shear check of the top rails isn't warranted as it clearly won't impact the allowable spans on any of the top rails.

SERIES 100 TOP RAIL

Series 100 Top Rail

Butts into post Alloy 6063 – T6 Aluminum

First calculate bending strength under vertical loading:

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 100 Top Rail Vertical Bending

Section Properties

lx (in4)	0.339
Sx (in3)	0.251
Zx (in3)	0.403
ly (in4)	0.291
J (in4)	0.19
b	1.55
t	0.065

Cw (in6)	0.118
βx (in)	-1.946
g0 (in)	-0.1

Aluminum Properties

A COMPANY OF A COM	10 million
Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

2/15/21

momente ou	engen		
Moment strei F4.	ngth is according to the 20	20 ADM Design Table 2	2-21 and Chapter
Local buckling	/ Yielding:		
λ	23.8461538 =	b/t	
λ1	22.8		
λ2	39		
F/Ω (ksi)	14.9461538 =	15.2	for λ<λ1
		19-0.17λ	for λ1<λ<λ2
		484/λ	for λ2<λ
For λ>λ1, loca	al buckling applies and the	moment strength is ca	lculated as F/Ω^{*S}
Mn/Ω (in-lbs)	3751 =	F/Ω*1000(kips/lbs)*Sx	K
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.403		
Mn/Ω (in-lbs)	6200 =	Znet*Fu/Ω*1000kips/	lbs
Lateral Torsio	nal Buckling:		
Lb (in)	42		
Cb	1.3		
C1	0.5	C2	0.5
U (in)	0.4365 =	С1*g0-С2*вх/2	
Me	151.717395 =	See 2015 ADM F.4-9	
λ	12.8419133 =	2.3(Lb*Sx/(Iy*J)^0.5)^	0.5
λ <cc, inelasti<="" th=""><td>c buckling applies</td><td></td><td></td></cc,>	c buckling applies		
Mnmb (in-kip	9.09333409 =	<i>Mp(1-λ/Cc)+π^2*E*λ*</i>	*Sx/Cc^3
Ma (in-lbs)	5511.11157 =	Mnmb/1.65*1000	
Strength is co	ontrolled by local buckling		
Ma (in-lbs)	3751		

Moment Strength

First calculate bending strength under horizontal loading:

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 100 Top Rail Horizontal Bending

Section Proper	rties
lx (in4)	0.291
Sx (in3)	0.291
Zx (in3)	0.4
ly (in4)	0.339
J (in4)	0.19
b	1.186
t	0.065

Cw (in6)	0.118
βx (in)	0
g0 (in)	-1

Aluminum Properties

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment Strength

Moment stre	ngth is accord	ling to the 20	020 ADM Desi	gn Table 2-2	1 and Chapter
F4.					
Local buckling	/ Yielding:				
λ	18.2461538	=	b/t		
λ1	22.8				
λ2	39				
F/Ω (ksi)	15.2	=	15.2		for λ<λ1
			19-0.17λ		for λ1<λ<λ2
			484/λ		for λ2<λ
For λ<λ1, loc	al buckling do	es not apply	and the mom	ent strength	is calculated
as the minim	um of Zfy/Ω o	or 1.5SFy/ Ω			
Mn/Ω (in-lbs)	6080	=	F/Ω*1000(ki	ps/lbs)*min(2	Zx or 1.5Sx)
Rupture Stren	gth				
Fu/Ω	15.3846154				
Znet	0.4				
Mn/Ω (in-lbs)	6153.84615	=	Znet*Fu/Ω*1	1000kips/lbs	
Lateral Torsio	nal Buckling:				
Lb (in)	42				
Cb	1.3				
C1	0.5		C2	0.5	5
U (in)	-0.5	=	С1*g0-С2*в>	x/2	
Me	141.403678	=	See 2015 AD	M F.4-9	
λ	14.3227596	=	2.3(Lb*Sx/(ly	/*J)^0.5)^0.5	
λ <cc, inelasti<="" td=""><td>ic buckling ap</td><td>plies</td><td></td><td></td><td></td></cc,>	ic buckling ap	plies			
Mnmb (in-kip	9.03925049	=	Mp(1-λ/Cc)+	π^2*E*λ*Sx/	/Cc^3
Ma (in-lbs)	5478.33363	=	Mnmb/1.65*	*1000	
Strength is co	ontrolled by la	teral torsion	al buckling		
Ma (in-lbs)	5478				

CR LAURENCE ALUMINUM RAIL SYSTEM

2/15/21

SERIES 100 BOTTOM RAIL

First check strength under vertical loading. Generally the bottom rail will not receive significant vertical loading because the top rail is normally much stiffer.

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	
Extrusion	

ARS Series 100 Bottom Rail Vertical Bending

Section Properties	Section	Properties
--------------------	---------	------------

lx (in4)	0.091
Sx (in3)	0.091
Zx (in3)	0.146
ly (in4)	0.166
J (in4)	0.002
b	0.862
t	0.076

Alum	inum	Prop	perties

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Cw (in6)	0.034
βx (in)	-0.613
g0 (in)	0

CR LAURENCE ALUMINUM RAIL SYSTEM

Moment Stren	ngth		
		2020 404 0	41 - 2 - 24
Noment stre	ngth is according to the	e 2020 ADIVI Design To	ible 2-21 and Chapter F4.
Local buckling	/ Yielding:		
Support Cond	lition		
Flat elemen	t supported on one ed	ge under flexural load	ing with compression edge free
λ	11.3421053 =	b/t	
λ1	6.5		
λ2	23		
F/Ω (ksi)	18.7128947 =	22.7	for $\lambda < \lambda 1$
		27.9-0.810λ	for $\lambda 1 < \lambda < \lambda 2$
		4932/λ^2	for $\lambda 2 < \lambda$
For λ>λ1, loco	al buckling applies and	the moment strength	is calculated as F/Ω*S <fy th="" ω*z<=""></fy>
Mn/Q (in-lbs)	1703 =	F/0*1000/kins/lb	s)*Sx <fu 0*7x<="" th=""></fu>
1411/ 12 (111-163)	1705 -	1/12 1000(11)5/15	5/ 5/ 1 9/ 12 2/
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.146		
Mn/Ω (in-lbs)	2246.15385 =	Znet*Fu/ Ω *1000	kips/lbs
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2	0.5
U (in)	0.15325 =	$C1^*g0-C2^*\beta x/2$	
Me	6.42711642 =	See 2015 ADM F.4-9	
λ	37.5684409 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th><th></th></cc,>	c buckling applies		
Mnmb (in-kip	2.61011765 =	Mp(1-λ/Cc)+π^2*E*λ*Sx/Cc^3	
Ma (in-lbs)	1581.88948 =	Mnmb/1.65*1000	
Strength is co	ontrolled by lateral tors	ional bucklina	
Ma (in-lbs)	1582	5	

Next check flexural strength under horizontal loading. The bottom rail may receive horizontal loading from wind loading on the infill or from the 50# concentrated infill load.

Aluminum Extrusion Flexural Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 100 Bottom Rail Horizontal Bending

Section Properties

lx (in4)	0.166
Sx (in3)	0.195
Zx (in3)	0.258
ly (in4)	0.091
J (in4)	0.002
b	0.862
t	0.076

Cw (in6)	0.034
βx (in)	0
g0 (in)	0

Aluminum Properties

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment Strength

Moment st	rength is according to t	he 2020 ADM Design Tab	le 2-21 and Chapter F4.
Support Co	ng/ Yielding: Indition		
Flat elem	ent supported on one e	edge under uniform loadi	ng 🔷
λ	11.3421053 =	b/t	
λ1	7.3		
λ2	12.6		
F/Ω (ksi)	12.9886842 =	15.2 19.0-0.530λ 155/λ	for λ<λ1 for λ1<λ<λ2 for λ2<λ
For λ>λ1, lo	ocal buckling applies an	d the moment strength is	calculated as $F/\Omega^*S < Fy/\Omega^*Z$
Mn/Ω (in-lb	s) 2533 =	F/Ω*1000(kips/lbs)*Sx <fy td="" ω*zx<=""></fy>	
Rupture Str	ength		
Fu/Ω	15.3846154		
Znet	0.258		
Mn/Ω (in-lb	s) 3969.23077 =	Znet*Fu/Ω*1000ki	os/lbs
Lateral Tors	ional Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2	0.5
U (in)	0 =	C1*g0-C2*8x/2	
Me	4.32608891 =	See 2015 ADM F.4-9	
λ	67.0316863 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inela<="" td=""><td>stic buckling applies</td><td></td><td></td></cc,>	stic buckling applies		
Mnmb (in-k	ip 3.65268875 =	$Mp(1-\lambda/Cc)+\pi^{2*E*\lambda*Sx/Cc^{3}}$	
Ma (in-lbs)	2213.75076 =	Mnmb/1.65*1000	
Strength is	controlled by lateral to	rsional buckling	
Ma (in-lbs) 2214		

Rail attached to the posts using the Rail Connecting Blocks (part RCB1) Rail fasteners -Bottom rail connection block to post #10x2" 55 PHP SMS Screw CRL Part RCBS Typical RCB length: $1 \le L \le 1.5$

Check shear @ post (6005-T5)

2x Fupostx dia screw x Post thickness x SF

V= 2.38 ksi 0.1697" 0.10" $\frac{1}{3}$ (FS)

V = 430#/screw

screw shear strength shear area = 0.0226 in^2 $V_n = 0.0226 \text{in}^2 * 0.5 * 80 \text{ksi} = 904$ $V_a = 904/2 = 452\#$

Screw tilting: $4.2(t_2{}^3D)^{1/2}F_{tu2} =$ $4.2(0.1{}^30.1697)^{1/2}38 \text{ ksi} = 2,079$ Screw tilting won't control for any of connections to the posts

Since minimum of 2 screws used for each Allowable load = $2 \cdot 430 \# = 860 \#$

Rail Connection to RCB

2 screws each end #8 Tek screw CRL Part TEK1 to 6063-T6 V= 2.38 ksi .0.1309" . 0.07" . <u>1</u> = 232# <u>3 (FS)</u>
0.000493

0

Picket Railing

5/8" Square pickets Wall thickness = 0.062"

Bending strength is the same about both axis.

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System		ARS	
Extrusion		5/8" Picket	
Section Prop	perties		
lx (in4)	0.00662]	Cw (in6)
Sx (in3)	0.0212		βx (in)
Zx (in3)	0.0268		g0 (in)
ly (in4)	0.00662		
J (in4)	0.0113		
b	0.5		
t	0.06		
Aluminum F	roperties		
Alloy:	6063-T6	1	
Fu (ksi)	30	1	
Fy (ksi)	25		
E (ksi)	10100		
Cc	78		

Note on shear: Shear will be carried by the web elements with bending resisted by the flange elements. As previously shown un 1/4" of web is required to resist the maximum design shear load thus further shear checks aren't warranted.

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Moment stre	ngth is accordin	ng to the 2020 ADM Design Table 2-21 ar	nd Chapter
F4.	Violding		
Support Con	dition		
Flat elemen	t under uniform	a compression supported on both sides	
٨	8.33333333 =	b/t	
11	22.8		
72	59		
F/Ω (ksi)	15.2 =	15.2 fo	or $\lambda < \lambda 1$
		19-0.170λ fo	or $\lambda 1 < \lambda < \lambda 2$
		484/λ fo	$r \lambda 2 < \lambda$
For λ<λ1, loca as the minim	al buckling does um of Zfy/Ω or 1	not apply and the moment strength is called 1.5 SFy/ Ω	alculated
Mn/Ω (in-lbs)	407 =	F/Ω*1000(kips/lbs)*min(Zx c	or 1.55x)
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.0268		
Mn/Ω (in-lbs)	412.307692 =	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:		
Lateral Torsio	48		
Ch	1 14		
C1	0.5	C2 0.5	
U (in)	0 =	C1*q0-C2*6x/2	
Me	3.99257358 =	See 2015 ADM F.4-9	
λ	23.006578 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" th=""><th>c buckling appli</th><th>es</th><th></th></cc,>	c buckling appli	es	
Mnmb (in-kip	0.57483252 =	<i>Mp(1-λ/Cc)+π^2*E*λ*Sx/Cc/</i>	13
Ma (in-lbs)	348.383343 =	Mnmb/1.65*1000	
Strenath is co	ontrolled by late	ral torsional buckling	
Ma (in-lbs)	348	3	

Pickets to top and bottom rails direct bearing -okLap into top and bottom rail -1" into bottom rail and 5/8" into top rail. 1-1/8" (28.3 mm) (6.3 mm)

Allowable bearing pressure = 20.5 ksi (ADM Table 2-2) Picket filler snaps between pickets to pressure lock pickets in place. Bearing surface = 1.375"*.062" = 0.085 in² Allowable bearing = 0.085 in²*20.5 ksi = 1,743# Withdrawal prevented by depth into rails.

Intermediate post used to provide additional support to bottom rail. 1.4" square 0.1" wall thickness Acts in compression only. Secured to rail with two #8 tek screws Shear strength of screws:

- For Use With All of Our Aluminum Railings
- Seven Standard Colors
 to Match Our

Bottom Rails

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Top rail connection to post face:

Use RCB attached to post with two #10 screws same as bottom rail.

The connection block can be cut square for use in horizontal rail applications or angled for use in sloped applications such as along stairs or ramps.

Connection of rail to RCB is with (2) #8 Tek screw to 6063-T6

V= 2.30 ksi
$$0.164$$
" 0.07 " $\frac{1}{3 (FS)}$ = 239#

 $V_{tot} = 2*230\# = 460\#$

Intermediate post fitting

Used for intermediate posts along stairways Fitting locks into top of post using structural silicone.

Maximum load on fitting is 300# 6' post spacing * 50 plf = 300#

Shear resisted by direct bearing between fitting and post area = 2.175"*0.1875 = 0.408 in² Bearing pressure = 300#/.408 = 736 psi

Moment of fitting to post:

This is an intermediate post with rotation of top rail restrained at rail ends. Moment of fitting is created by eccentricity between bottom of top rail and top of post: e

= 0.425"

M = 300# * (0.425") = 127.5#"

Use screws for positive connection #8 Tek screws: Shear strength = V=2.30 ksi $\cdot 0.164" \cdot 0.1" \cdot 1 = 328\#$ 3 (FS)

V= 0.246'30 ksi \cdot 0.1" \cdot <u>1</u> = 246# <u>3 (FS)</u>

Vs = 0.0162in²*0.5*80ksi/2 = 324#

Moment resistance = 246#*2.375" = 584#"

Screws are located 1.5d from top of post: (ADM J.5.3) s = 1.5*0.164 = 0.246 (1/4") Screw will be at least 1/4" from bottom of the shear tab too as shear tab is 5/8" long

Strength of shear tab: A = 0.75"*0.15" = 0.1125Casting strength: A356.0 T61 F_{tu} = 28 ksi F_{uv} = 0.6F_{tu} T_a = 0.1125*28 ksi/1.95 = 1,615# V_a = 0.1125*0.6*28 ksi/1.95 = 969# Shear load will be primarily resisted by tab on compression face.

> EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 200 Top Rail Vertical Loading

Section Properties

lx (in4)	0.241
Sx (in3)	0.201
Zx (in3)	0.398
ly (in4)	1.43
J (in4)	0.00159
b	3
t	0.087

Cw (in6)	0.978
βx (in)	-3.61
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according to the 20	20 ADM Desig	gn Table 2-21 and Chapter
F4.	/ Violding:		
Support Cond	/ Helding:		
Flat elemen	t under uniform compress	ion supported	l on both sides
λ	34.4827586 =	b/t	•
λ1	22.8		
λ2	39		
F/Ω (ksi)	13.137931 =	15.2 19-0.170λ 484/λ	for λ<λ1 for λ1<λ<λ2 for λ2<λ
For λ>λ1, loca Mn/Ω (in-lbs)	al buckling applies and the 2641 =	moment strer F/Ω*1000(kip	ngth is calculated as F/Ω*S ps/lbs)*Sx
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.398		
Mn/Ω (in-lbs)	6123.07692 =	Znet*Fu/Ω*1	000kips/lbs
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2	0.5
U (in)	0.9025 =	С1*g0-С2*вх	/2
Me	69.3716157 =	See 2015 ADM F.4-9	
λ	16.9948636 =	2.3(Lb*Sx/(Iy	*J)^0.5)^0.5
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th><th></th></cc,>	c buckling applies		
Mnmb (in-kip 8.49961363 =		<i>Mp(1-λ/Cc)+π^2*E*λ*Sx/Cc^3</i>	
Ma (in-lbs)	5151.28099 =	Mnmb/1.65*	1000
Strength is co	ntrolled by local buckling		
Ma (in-lbc)	26/1		
	2041		

Next calculate bending strength under horizontal loading:

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 200 Top Rail Horizontal Loading

Section Properties		
lx (in4)	1.43	
Sx (in3)	0.818	
Zx (in3)	1.03	
ly (in4)	0.241	
J (in4)	0.00159	
b	0.75	
t	0.087	

Cw (in6)	0.978
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according t	o the 2020 ADM Design Table 2	-21 and Chapter
F4.			
Local buckling	/ Yielding:		
Support Cond	lition		
Flat elemen	t under uniform co	ompression supported on both	sides
λ	8.62068966 =	b/t	
λ1	22.8		
λ2	39		
F/Q (ksi)	15.2 =	15.2	for $\lambda < \lambda 1$
.,	10.2	19-0.170λ	for $\lambda 1 < \lambda < \lambda 2$
		484/λ	for $\lambda 2 < \lambda$
For $\lambda < \lambda 1$, loca	al buckling does no	t apply and the moment streng	th is calculated
as the minim	um of Zfy/ Ω or 1.5.	SFy/Ω	
Mn/O (in-lbs)	15656 =	F/O*1000(kins/lbs)*m	in(7x or 1 55x)
, (10000	1/12 1000(mps/155/ mi	11(2X 01 1.00X)
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	1.03		
Mn/Ω (in-lbs)	15846.1538 =	Znet*Fu/Ω*1000kips/l	bs
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		0.5
C1	0.5	C2	0.5
U (in)	0 =	C1*g0-C2*bx/2	
Nie	12.2283807 =	2 2/15 ADIVI F.4-9	7.5
A>Cc plastic h	or.0507510 =	2.3[Lb 3X/[IY J].0.3]."(
Momb (in-kin	12 8232988 =	$\pi^{2}F^{*}S_{Y}/\lambda^{2}$	
Ma (in-lbs)	7771 69622 =	Mnmb/1 65*1000	
110 (11-103)		Winnis/ 1.05 1000	
Strength is co	ontrolled by lateral	torsional buckling	
Ma (in-lbs)	7772	2	

Aluminum extrusion strength is according to ADM 2020.

System Extrusion ARS Series 200X Top Rail Vertical Loading

Section Properties

lx (in4)	0.132
Sx (in3)	0.137
Zx (in3)	0.246
ly (in4)	0.85
J (in4)	0.000927
b	2.57
t	0.074

Cw (in6)	0.271
βx (in)	-3.51
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according to the 20	020 ADM Design Table	2-21 and Chapter
F4.	/ Violding:		
Support Cond	dition		
Flat elemen	t under uniform compress	ion supported on both	sides 🔺
	24 7207207 -		
A 31	54.7297297 =	D/L	
72	22.0		
A2			
F/Ω (ksi)	13.0959459 =	15.2	for λ<λ1
		19-0.170λ	for $\lambda 1 < \lambda < \lambda 2$
		484/λ	for $\lambda 2 < \lambda$
For 2>21 loc	al huckling annlies and the	moment strength is co	alculated as E/O*S
101 11-111, 1000	ar backing applies and the	moment strength is et	
Mn/Ω (in-lbs)	1794 =	F/Ω*1000(kips/lbs)*S	х х
Rupture Stren	gth		
5	15 2046154		
Fu/12	0.246		
Znet	2784 61528 -	Zpot*Eu/0*1000king	/lbs
win/ 12 (in-ibS)	5764.01556 -	ZHEL FU/SZ 1000KIPS/	105
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2	0.5
U (in)	0.8775 =	C1*g0-C2*6x/2	
Me	37.6250385 =	See 2015 ADM F.4-9	
λ	19.05164 =	2.3(Lb*Sx/(Iy*J)^0.5)	^0.5
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th><th></th></cc,>	c buckling applies		
Mnmb (in-kip	5.19611611 =	<i>Mp(1-λ/Cc)+π^2*E*λ</i>	*Sx/Cc^3
Ma (in-lbs)	3149.16128 =	Mnmb/1.65*1000	
Strength is co	ntrolled by local buckling		
Ma (in the)			
ivia (in-ibs)	1/94		

Next calculate bending strength under horizontal loading:

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 200X Top Rail Horizontal Loading

Section Properties

lx (in4)	0.85
Sx (in3)	0.567
Zx (in3)	0.681
ly (in4)	0.132
J (in4)	0.000927
b	1.11
t	0.074

Cw (in6)	0.271
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according to	the 2020 ADM Design Table	e 2-21 and Chapter
F4.	/ Madalia av		
Local buckling	/ Yielding:		
Support Cond	altion		
Flat elemen	t under uniform cor	npression supported on bot	h sides 🗧
λ	15 =	b/t	
λ1	22.8		
λ2	39		
	15.2 -	15.2	for 2-21
r/12 (KSI)	15.2 -	19-0 170)	for $\lambda 1 < \lambda < \lambda > \lambda$
		19-0.170/	for $\lambda 2 < \lambda$
		404/1	JUI 1/2 ~ 1/
For λ<λ1. loco	al bucklina does not	apply and the moment stre	nath is calculated
as the minim	μm of Zfv/ Ω or 1.5SI	uppi) and the moment stiel Γν/Ω	igen is calculated
	, ,,,		
Mn/Ω (in-lbs)	10351 =	F/Ω*1000(kips/lbs)*	min(Zx or 1.5Sx)
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.681		
Mn/Ω (in-lbs)	10476.9231 =	Znet*Fu/Ω*1000kips	s/lbs
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2	0.5
U (in)	0 =	С1*g0-С2*вх/2	
Me	5.36401535 =	See 2015 ADM F.4-9	
λ	102.649558 =	2.3(Lb*Sx/(Iy*J)^0.5)	^0.5
λ>Cc elastic b	ouckling applies		
Mnmb (in-kip	6.84556464 =	π^2*E*Sx/λ^2	
Ma (in-lbs)	4148.82705 =	Mnmb/1.65*1000	
Chan ath is	when all and have been all the	anaional buolding	
Strength is co	ontrollea by lateral t	orsional buckling	
ivia (in-lbs)	4149		

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 300 Top Rail Vertical Loading

Section Properties

lx (in4)	0.574
Sx (in3)	0.364
Zx (in3)	0.583
ly (in4)	1.07
J (in4)	0.00168
b	1.41
t	0.086

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is accordin	ng to the 2020 ADM Design Table 2-21 and Chapter
F4.	/ Vielding:	
Support Cond	dition	
Round prof	iles	\$
λ	16.3953488 =	Rb/t
λ1	70	
λ2	189	
F/Ω (ksi)	20.816501 =	27.7-1.70λ^0.5for $\lambda < \lambda 1$ 18.5-0.593λ^0.5for $\lambda 1 < \lambda < \lambda 2$ 3776/(λ(1+λ^0.5/35)^2)for $\lambda 2 < \lambda$
For λ<λ1, loco as the minim	al buckling does um of Zfy/Ω or .	not apply and the moment strength is calculated 1.5SFy/ Ω
Mn/Ω (in-lbs)	8273 =	F/Ω*1000(kips/lbs)*min(Zx or 1.5Sx)
Rupture Stren	gth	
Fu/Ω	15.3846154	
Znet	0.583	
Mn/Ω (in-lbs)	8969.23077 =	Znet*Fu/Ω*1000kips/lbs
Lateral Torsio	nal Buckling:	
Lb (in)	72	
Cb	1.14	
C1	0.5	C2 0.5
U (in)	0.115 =	C1*q0-C2*8x/2
Me	28.0602538 =	See 2015 ADM F.4-9
λ	35.9596498 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5
λ <cc, inelasti<="" td=""><td>ic buckling appli</td><td>es</td></cc,>	ic buckling appli	es
Mnmb (in-kip	10.6051194 =	<i>Mp(1-λ/Cc)+π^2*E*λ*Sx/Cc^3</i>
Ma (in-lbs)	6427.34509 =	Mnmb/1.65*1000
Strength is co	ontrolled by late	eral torsional buckling
Ma (in-lbs)	6427	

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 300 Top Rail Horizontal Loading

Section Properties

lx (in4)	1.07
Sx (in3)	0.712
Zx (in3)	0.583
ly (in4)	0.574
J (in4)	0.00168
b	1.41
t	0.086

Cw (in6)	0.906
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is accordi	ing to the 2020 ADM Design Table 2-21 and Chapter	
F4.	(Mistelia av		
Local buckling	/ Yielding:		
Support Cond	aition		
Round profi	les		
λ	16.3953488 =	= Rb/t	
λ1	70		
λ2	189		
F/Ω (ksi)	20.816501 =	= 27.7-1.70λ^0.5 for $\lambda < \lambda 1$ 18.5-0.593λ^0.5 for $\lambda 1 < \lambda < \lambda 2$ 3776/(λ(1+λ^0.5/35)^2) for $\lambda 2 < \lambda$	
For $\lambda < \lambda 1$, local buckling does not apply and the moment strength is calculated as the minimum of Zfy/ Ω or 1.5SFy/ Ω			
Mn/Ω (in-lbs)	8833 =	= F/Ω*1000(kips/lbs)*min(Zx or 1.5Sx)	
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.583		
Mn/Ω (in-lbs)	8969.23077 =	= Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2 0.5	
U (in)	0 =	- C1*g0-C2*βx/2	
Me	18.4710844 =	See 2015 ADM F.4-9	
λ	61.9875341 =	= 2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" th=""><th>c buckling app</th><th>lies</th></cc,>	c buckling app	lies	
Mnmb (in-kip	12.262968 =	= Mp(1-λ/Cc)+π^2*E*λ*Sx/Cc^3	
Ma (in-lbs)	7432.10182 =	= Mnmb/1.65*1000	
Strength is co	ontrolled by lat	eral torsional buckling	
Ma (in-lbs)	7432		

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 300X Top Rail Vertical Loading

Section Properties

lx (in4)	0.288
Sx (in3)	0.252
Zx (in3)	0.395
ly (in4)	0.949
J (in4)	0.00166
b	1.5
t	0.087

Cw (in6)	0.312
βx (in)	-4.409
g0 (in)	1

Alloy:	6063-16	
Fu (ksi)	30	
Fy (ksi)	25	
E (ksi)	10100	
Cc	78	

Moment stre	ngth is according	to the 2020 ADM Desig	n Table 2-21	l and Chapter
F4.	(Maldin av			
Local buckling	/ Yleiding:			
	artion			
Round prof	iles			₹
λ	17.2413793 =	Rb/t		
λ1	70			
λ2	189			
F/Ω (ksi)	20.6411342 =	27.7-1.70λ^0 18.5-0.593λ^ 3776/(λ(1+λ^	.5 0.5 0.5/35)^2)	for λ<λ1 for λ1<λ<λ2 for λ2<λ
For λ<λ1, loci as the minim	al buckling does r um of Zfy/Ω or 1.	not apply and the mome 5SFy/Ω	nt strength	is calculated
Mn/Ω (in-lbs)	5727 =	F/Ω*1000(kip	s/lbs)*min(2	Zx or 1.5Sx)
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.395			
Mn/Ω (in-lbs)	6076.92308 =	Znet*Fu/Ω*1	000kips/lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2	0.5	5
U (in)	1.60225 =	С1*д0-С2*вх,	/2	
Me	70.7803983 =	See 2015 ADM	See 2015 ADM F.4-9	
λ	18.8388474 =	2.3(Lb*Sx/(Iy	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" td=""><td>c buckling applie.</td><td>S</td><td></td><td></td></cc,>	c buckling applie.	S		
Mnmb (in-kip	8.48717637 =	Мр(1-λ/Сс)+л	$Mp(1-\lambda/Cc)+\pi^{2*E*\lambda*Sx/Cc^{3}}$	
Ma (in-lbs)	5143.74325 =	Mnmb/1.65*	1000	
Strength is co	ontrolled by later	al torsional buckling		
Ma (in-lbs)	5144			

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 300X Top Rail Vertical Loading

Section Properties

lx (in4)	0.949
Sx (in3)	0.632
Zx (in3)	0.792
ly (in4)	0.288
J (in4)	0.00166
b	1.5
t	0.087

Cw (in6)	0.312
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is accordin	g to the 2020 ADM Design Table 2-21 and Chapter
F4.	(NC 11)	
Local buckling	/ Yielding:	
Support Cond	dition	
Round prof	iles	
λ	17.2413793 =	Rb/t
λ1	70	
λ2	189	
F/Ω (ksi)	20.6411342 =	27.7-1.70λ^0.5for $\lambda < \lambda 1$ 18.5-0.593λ^0.5for $\lambda 1 < \lambda < \lambda 2$ 3776/(λ(1+λ^0.5/35)^2)for $\lambda 2 < \lambda$
For λ<λ1, loco as the minim	al buckling does um of Zfy/Ω or 1	not apply and the moment strength is calculated5SFy/ Ω
Mn/Ω (in-lbs)	12000 =	F/Ω*1000(kips/lbs)*min(Zx or 1.5Sx)
Rupture Stren	gth	
Fu/Ω	15.3846154	
Znet	0.792	
Mn/Ω (in-lbs)	12184.6154 =	Znet*Fu/Ω*1000kips/lbs
Lateral Torsio	nal Buckling:	
Lb (in)	72	
Cb	1.14	
C1	0.5	C2 0.5
U (in)	0 =	C1*g0-C2*8x/2
Me	9.40394183 =	See 2015 ADM F.4-9
λ	81.8491421 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5
λ>Cc elastic b	ouckling applies	
Mnmb (in-kip	9.88888057 =	π^2*E*Sx/λ^2
Ma (in-lbs)	5993.26095 =	Mnmb/1.65*1000
Strength is co	ontrolled by later	ral torsional buckling
Ma (in-lbs)	5993	and an

Top Rail Infill for Pickets

 $\begin{array}{ll} I_{yy} = 0.144 \ in^4 & I_{xx} = 0.0013 in^4 \\ S_{yy} = 0.115 \ in^3 & S_{xx} = 0.0057 \ in^4 \\ Z_{yy} = 0.161 in^3 & \end{array}$

Infill for pickets provides negligible contribution to vertical load resistance but provides some horizontal load resistance.

$$\begin{split} b/t &= 2.5"/0.063" = 39.7 > 34.7 \mbox{ (Flat element supported on both edges)} \\ F/\Omega &= 27.9 - 0.150*39.7 = 21.9 \mbox{ksi} \\ M_a &= 21.9 \mbox{ksi}*0.115 \mbox{in}^3 = 2,520" \mbox{\# (For local buckling)} \\ M_a &= 15.2 \mbox{ksi}*0.161 \mbox{in}^3 = 2,450" \mbox{\# (For yielding)} \mbox{ (controls)} \end{split}$$

Top Rail Infill for Glass

$I_{yy} = 0.1657 \text{ in}^4$	$I_{xx} = 0.06062in^4$
$S_{yy} = 0.1321 \text{ in}^3$	$S_{xx} = 0.08607 \text{ in}^4$
$Z_{yy} = 0.2087 in^3$	$Z_{xx} = 0.1232in^3$

b/t = 1"/0.06" = 16.7 < 22.8 (Local buckling doe snot control for any of the elements)

Vertical bending: $M_{a,x} = 15.2 \text{ksi} * 0.1232 \text{in}^3 = 1,870$ "#

Horizontal bending: Note $1.5S_{yy} < Z_{yy}$. $M_{a,y} = 1.5*0.1321in^{3*}15.2ksi = 3,010"#$

Adjustable Fastening Plates for Top Rails Top rail connection to post:

For Vertical loads top rail is restrained by (2) #10 Tek screws each side.

Connection of bracket to post is with (2) #14 screws so is stronger.

For horizontal loads the top rail directly bears on side of post.

Tek screw strength: Check shear @ rail (6063-T6) 2x Furailx dia screw x Rail thickness x SF V = 2.30 ksi 0.19" $\cdot 0.09$ "/3 = 342#/screw Pullout strength: $R_a = K_s DL_e F_{tv2} / \Omega = 1.2 \times 0.19 \times 0.125 \times 30 \text{ ksi} / 3 = 285 \text{ } \#$

Since minimum of 2 screws used for each Allowable load = 2' 342# = 684# Horiz. Allowable uplift = 2*285# = 570#

Post bearing strength $V_{all} = A_{bearing} * F_B$ $A_{\text{bearing}} = 0.09$ "*2.25" = 0.2025 in²F_B = 20.5 ksi

 $V_{all} = 0.2025 \text{ in}^2 * 20.5 \text{ ksi} = 4.15 \text{ k}$

Bracket tab bending strength Vertical uplift force For 6061-T6 aluminum stamping 1/8" thick Check for shear rupture of tabs: V_a =.438"*.125"*12.7ksi = 695# each

Tab uplift bending: $M_a = 0.438*0.125^2/4*30$ ksi/1.95 = 26"# each Uplift resistance: at edge of screw head L = 1.158 - .2 = 0.958 $U_a = \frac{26}{(0.958/2)} = 109 \# \text{ per bracket}, 218 \# \text{ per post} > 200 \#$ Tab bending controls for uplift Tension strength of #14 screws into post screw slot: $R_n = 0.29DL_eF_{tu} = 0.29*0.25*(.75-.125-0.056)*38ksi = 1568$ $R_a = 1568/3 = 523\#$ Prying = $109*(1.158+0.625)/0.31 = 627\# \le 2*523\#$ OK

Screw strength controls connection strength: $P_a = 2*295\# = 590\# > 300\# OK$

Strengths of Tek screws: $#10: T_a = 885, V_a = 573$ $#14: T_a = 1605$, $V_a = 990$

> EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

 $2 \cdot 3/8^{\circ}$

Page 167 of 276

LHB

0

RAIL SPLICES:

Splice plate strength: 6061-T6 bars 5/8 x 1/8 Vertical load will be direct bearing from rail/plate to post no bending or shear in plate.

Horizontal load will be transferred by shear in the fasteners:

Rail to splice plates:

#10 Tek screw strength: Check shear @ rail (6063-T6) 2x F_{urail}x dia screw x rail thickness x SF V= 2·30 ksi ·0.19" · 0.09" · <u>1</u> = 342#/screw 3 (FS) or F_{urplate}x dia screw x plate thickness x SF V= 38 ksi ·0.19" · 0.125" · <u>1</u> = 300#/screw; for two screws = 600# <u>3 (FS)</u> Pullout strength:

Pullout strength: $R_a = K_s DL_e F_{tv2} / \Omega = 1.2*0.19*0.125*38 ksi/3 = 361 \#$

Post to splice plate:

1/4" Tek screws into post screw chase so screw to post connection will not control (see previous page). splice plate screw shear strength

 $2x F_{uplatex}$ dia screw x plate thickness x SF V= 2·38 ksi ·0.25" · 0.125" · <u>1</u> = 792#/screw 3 (FS)

Check moment from horizontal load: M = P*0.75". For 200# maximum load from a single rail on to splice plates M = 0.75*200 = 150#" $S = 0.125*(0.625)^2/6 = 0.008 \text{ in}^3$ $f_b = 150$ #"/(0.008*2) = 9,216 psi > 31.8ksi OK

Vertical load: $M_a = 2*5/8"*0.125^2/4*38ksi/1.95 = 95"#$ Allowable uplift = 95"#(1.125"/2) = 169# each bracket

For corner brackets screw strength and bending strength will be the same.

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

CRL 200 and 300 Series Splice Plates

Series 320 Top Rail

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 320 Top Rail Vertical Loading

Section Properties

lx (in4)	0.118
Sx (in3)	0.201
Zx (in3)	0.243
ly (in4)	0.796
J (in4)	0.00157
b	3.59
t	0.1

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Woment Sti	engen		
Moment stre	ngth is according to the 20	20 ADM Design Table 2-21	1 and Chapter
F4.	1.0.1.0		
Local buckling	/ Yielding:		
Support Cond	lition		
Round hollo	w elements under uniforr	n compression	◆
λ	35.9 =	Rb/t	
λ1	31.2		
λ2	189		
F/Ω (ksi)	14.9469451 =	15.2	for λ<λ1
		18.5-0.593λ^0.5	for $\lambda 1 < \lambda < \lambda 2$
		3776/(λ(1+λ^0.5/35)^2)	for $\lambda 2 < \lambda$
			,
For λ>λ1, loca	al buckling applies and the	moment strength is calcul	ated as F/Ω*S
Mn/Q (in-lbs)	3004 =	F/0*1000/kins/lbs)*Sx	
1011/12 (111103)	5004 -	1732 1000(11)571057 57	
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.243		
Mn/Q (in-lbs)	3738.46154 =	Znet*Fu/Ω*1000kips/lbs	
,,			
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2 0.5	5
U (in)	0.915 =	C1*a0-C2*Bx/2	
Me	36 0048031 =	See 2015 ADM F 4-9	
λ	23 5900232 =	2 2/1 h * Sy ///y * 1) A D 5) A D 5	
$\lambda < Cc$ inelasti	c huckling applies	2.0(10 0//(19 0/ 0/0/ 0/0	
Mpmb (in-kin	5 23370562 =	$Mn(1-\lambda/Cc)+\pi^{\gamma*F*\lambda*cv}$	(Cc^3
Ma (in-lbs)	3171 9428 -	Mnmh/1 65*1000	
	51/1.3420 -	WIIIII0/1.05 1000	
Strenath is co	ontrolled by local buckling		
Ma (in-lbs)	3004		
	5004		

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 320 Top Rail Horizontal Loading

Section Properties

lx (in4)	0.796
Sx (in3)	0.531
Zx (in3)	0.669
ly (in4)	0.118
J (in4)	0.00157
b	0.775
t	0.1

Cw (in6)	0.0741
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according	to the 2020 ADM Design Table 2-21 and Chapter
F4.		
Local buckling	/ Yielding:	
Support Cond	lition	
Round hollo	w elements unde	er uniform compression
λ	7.75 =	Rb/t
λ1	31.2	
λ2	189	
F/Ω (ksi)	15.2 =	15.2 for $\lambda < \lambda 1$
		$3776/(\lambda(1+\lambda^0.5/35)^2)$ for $\lambda 2 < \lambda$
For λ<λ1. loc	al bucklina does n	ot apply and the moment strenath is calculated
as the minim	um of Zfy/ Ω or 1.	$5SFy/\Omega$
Mn/Ω (in-lbs)	10136 =	F/Ω*1000(kips/lbs)*min(Zx or 1.5Sx)
Rupture Stren	gth	
Fu/Ω	15.3846154	
Znet	0.669	
Mn/Ω (in-lbs)	10292.3077 =	Znet*Fu/Ω*1000kips/lbs
Lateral Torsio	nal Buckling:	
Lb (in)	72	
Cb	1.14	
C1	0.5	C2 0.5
U (in)	0 =	C1*g0-C2*8x/2
Me	4.66246149 =	See 2015 ADM F.4-9
λ	106.549199 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5
λ>Cc elastic b	ouckling applies	ದ ನೀಡಿಸಿದರು ಚಿತ್ರಿಗೆ ಚಿತ್ರಗಳು
Mnmb (in-kip	5.76292313 =	π^2*E*Sx/λ^2
Ma (in-lbs)	3492.68069 =	Mnmb/1.65*1000
Strength is co	ontrolled by latera	al torsional buckling
Ma (in-lbs)	3493	277

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 350 Top Rail Vertical Loading

Section Properties

lx (in4)	0.249
Sx (in3)	0.224
Zx (in3)	0.355
ly (in4)	1.29
J (in4)	0.00101
b	2.82
t	0.07

Cw (in6)	0.719
βx (in)	-4.57
g0 (in)	-1.82

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is accordin	g to the 2020 ADN	1 Design Table 2	21 and Chapter
F4.	Violding			
Support Con	dition			
Round prof	lles			•
λ	40.2857143 =	Rb/t		
λ1	70			
λ2	189			
F/Ω (ksi)	16.9099252 =	27.7-1.	.70λ^0.5	for $\lambda < \lambda 1$
		18.5-0. 3776/(.593λ^0.5 λ(1+λ^0.5/35)^2)	for $\lambda 2 < \lambda$
For λ<λ1, loce	al buckling does	not apply and the	moment strengt	h is calculated
as the minim	um of Zfy/Ω or 1	5SFy/Ω	-	
Mn/Ω (in-lbs)	5091 =	F/Ω*10	000(kips/lbs)*mir	n(Zx or 1.5Sx)
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.355			
Mn/Ω (in-lbs)	5461.53846 =	Znet*F	u/Ω*1000kips/lb	S
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2	C).5
U (in)	0.2325 =	C1*g0-	-C2*Bx/2	
Me	31.318508 =	See 20.	See 2015 ADM F.4-9	
λ	26.7014002 =	2.3(Lb*	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" td=""><td>c buckling applie</td><td>25</td><td></td><td></td></cc,>	c buckling applie	25		
Mnmb (in-kip	7.09323514 =	Mp(1-)	$Mp(1-\lambda/Cc)+\pi^{2}E^{\lambda}Sx/Cc^{3}$	
Ma (in-lbs)	4298.93039 =	Mnmb,	/1.65*1000	
Strength is co	ontrolled by late	ral torsional buckli	ing	
Ma (in-lbs)	4299			

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 350 Top Rail Horizontal Loading

Section Properties

lx (in4)	1.29
Sx (in3)	0.692
Zx (in3)	0.88
ly (in4)	0.249
J (in4)	0.00101
b	0.747
t	0.07

Cw (in6)	0.719
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according	to the 2020 ADM Design Table 2-21 and Chapter		
F4.				
Local buckling	/ Yielding:			
Support Cond	lition			
Round profi	les			
λ	10.6714286 =	Rb/t		
λ1	70			
λ2	189			
F/Ω (ksi)	22.1465841 =	27.7-1.70λ^0.5for $\lambda < \lambda 1$ 18.5-0.593λ^0.5for $\lambda 1 < \lambda < \lambda 2$ 3776/(λ(1+λ^0.5/35)^2)for $\lambda 2 < \lambda$		
For λ<λ1, loco as the minim	For $\lambda < \lambda 1$, local buckling does not apply and the moment strength is calculated as the minimum of Zfy/ Ω or 1.5SFy/ Ω			
Mn/Ω (in-lbs)	13333 =	F/Ω*1000(kips/lbs)*min(Zx or 1.5Sx)		
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.88			
Mn/Ω (in-lbs)	13538.4615 =	Znet*Fu/Ω*1000kips/lbs		
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2 0.5		
U (in)	0 =	C1*g0-C2*8x/2		
Me	10.4802824 =	See 2015 ADM F.4-9		
λ	81.1291853 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5		
λ>Cc elastic b	uckling applies			
Mnmb (in-kip	10.9103067 =	π^2*E*Sx/λ^2		
Ma (in-lbs)	6612.30708 =	Mnmb/1.65*1000		
Strength is co	ontrolled by later	al torsional buckling		
Ma (in-lbs)	6612			

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 400 Top Rail Vertical Loading

Section	Properties
---------	------------

lx (in4)	0.612
Sx (in3)	0.45
Zx (in3)	0.776
ly (in4)	3.74
J (in4)	0.00254
b	12.5
t	0.087

Cw (in6)	7.85
βx (in)	-4.71
g0 (in)	2.18

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according to the 20	020 ADM Design Table 2-22	1 and Chapter	
F4.	/ Vielding:			
Support Cond	lition			
Round profi	les		\$	
λ	143.678161 =	Rb/t		
λ1	70			
λ2	189			
F/Ω (ksi)	11.3919566 =	27.7-1.70λ^0.5 18.5-0.593λ^0.5 3776/(λ(1+λ^0.5/35)^2)	for λ<λ1 for λ1<λ<λ2 for λ2<λ	
For λ>λ1, loca	For $\lambda > \lambda 1$, local buckling applies and the moment strength is calculated as F/ Ω^{*S}			
Mn/Ω (in-lbs)	5126 =	F/Ω*1000(kips/lbs)*Sx		
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.776			
Mn/Ω (in-lbs)	11938.4615 =	Znet*Fu/Ω*1000kips/lbs		
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2 0.5	5	
U (in)	2.2675 =	C1*g0-C2*8x/2		
Me	408.534561 =	See 2015 ADM F.4-9		
λ	10.4785796 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5		
λ <cc, inelasti<="" th=""><td>c buckling applies</td><td></td><td></td></cc,>	c buckling applies			
Mnmb (in-kip	17.7842841 =	<i>Mp(1-λ/Cc)+π^2*E*λ*Sx/Cc^3</i>		
Ma (in-lbs)	10778.354 =	Mnmb/1.65*1000		
Strength is co	ntrolled by local buckling			
Ma (in-lbs)	5126			

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 400 Top Rail Horizontal Loading

Section Properties

lx (in4)	3.74
Sx (in3)	1.49
Zx (in3)	1.94
ly (in4)	0.612
J (in4)	0.00254
b	1.04
t	0.087

Cw (in6)	7.85
βx (in)	0
g0 (in)	-2.5

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according	to the 2020 ADM Desig	n Table 2-21 and Chapter	
F4.	(Maldin et			
Local buckling	/ Yielding:			
Flat elemen	t under uniform c	compression supported	on both sides	
λ	11.954023 =	b/t		
λ1	22.8			
λ2	39			
F/Ω (ksi)	15.2 =	15.2	for λ<λ1	
and an an and the an an area		19-0.170λ	for λ1<λ<λ2	
		484/λ	for λ2<λ	
For λ<λ1, loco as the minim	al buckling does n	ot apply and the mome 55Ev/O	nt strength is calculated	
	unn 0j 2jy/sz 01 1.0	, , , , , , , , , , , , , , , , , , ,		
Mn/Ω (in-lbs)	29394 =	F/Ω*1000(kip	os/lbs)*min(Zx or 1.5Sx)	
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	1.94			
Mn/Ω (in-lbs)	29846.1538 =	Znet*Fu/Ω*1	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2	0.5	
U (in)	-1.25 =	С1*g0-С2*вх,	/2	
Me	35.5461592 =	See 2015 ADN	See 2015 ADM F.4-9	
λ	64.6408938 =	2.3(Lb*Sx/(Iy	2.3(Lb*Sx/(ly*J)^0.5)^0.5	
λ <cc, inelasti<="" th=""><td>c buckling applies</td><td></td><td></td></cc,>	c buckling applies			
Mnmb (in-kip	28.5382564 =	382564 = $Mp(1-\lambda/Cc)+\pi^{2*E*\lambda*Sx/Cc^{3}}$		
Ma (in-lbs)	17295.913 =	Mnmb/1.65*.	Mnmb/1.65*1000	
Strength is co	ontrolled by latera	ll torsional buckling		
Ma (in-lbs)	17296			

EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u>
Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

SystemARSExtrusionSeries 500 Top Rail Vertical Bending

Section Properties

lx (in4)	0.257
Sx (in3)	0.443
Zx (in3)	0.392
ly (in4)	3.34
J (in4)	0.00248
b	25
t	0.086

Aluminum	Properties

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Сс	78

Cw (in6)	1.05
βx (in)	-5.62
g0 (in)	0

Moment Str	rength		
Moment stre	ngth is according to the 20	020 ADM Design Table 2-2	1 and Chapter
F4.			
Local buckling	/ Yielding:		
Support Cond	dition		
Round hollo	ow elements under uniform	m compression	\$
λ	290.697674 =	Rb/t	
λ1	31.2		
λ2	189		
F/Ω (ksi)	5.87337068 =	15.2 18.5-0.593λ^0.5 3776/(λ(1+λ^0.5/35)^2)	for λ<λ1 for λ1<λ<λ2 for λ2<λ
For λ>λ1, loc	al buckling applies and the	moment strength is calcu	lated as F/Ω*S
Mn/Ω (in-lbs)	2602 =	F/Ω*1000(kips/lbs)*Sx	
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.392		
Mn/Ω (in-lbs)	6030.76923 =	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2 0.	5
U (in)	1.405 =	С1*g0-С2*вх/2	
Me	217.11117 =	See 2015 ADM F.4-9	
λ	14.2617014 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	5
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th><th></th></cc,>	c buckling applies		
Mnmb (in-kip	9.33527188 =	Mp(1-λ/Cc)+π^2*E*λ*Sx,	/Cc^3
Ma (in-lbs)	5657.74053 =	Mnmb/1.65*1000	
Strength is co	ontrolled by local buckling		
Ma (in-lbs)	2602		

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Series 500 Top Rail Horizontal Bending

Section Properties

lx (in4)	3.34
Sx (in3)	1.34
Zx (in3)	1.58
ly (in4)	0.257
J (in4)	0.00248
b	1.032
t	0.086

Cw (in6)	1.05
βx (in)	0
g0 (in)	-2.5

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according	to the 2020 ADM Design Table 2-21 and 0	Chapter
F4.			
Local buckling	/ Yielding:		
Support Cond	lition		
Flat elemen	t under uniform o	compression supported on both sides	
λ	12 =	b/t	
λ1	22.8		
λ2	39		
F/Ω (ksi)	15.2 =	15.2 for λ	<λ1
		19-0.170λ for λ	1<λ<λ2
		484/λ for λ	2<λ
For λ<λ1, loca as the minim	al buckling does n um of Zfy/Ω or 1.	not apply and the moment strength is calc 5SFy/ Ω	ulated
Mn/Ω (in-lbs)	23939 =	F/Ω*1000(kips/lbs)*min(Zx or 1	.5Sx)
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	1.58		
Mn/Ω (in-lbs)	24307.6923 =	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2 0.5	
U (in)	-1.25 =	C1*g0-C2*8x/2	
Me	8.43676165 =	See 2015 ADM F.4-9	
λ	125.827355 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ>Cc elastic b	ouckling applies		
Mnmb (in-kip	11.1971776 =	π^2*E*Sx/λ^2	
Ma (in-lbs)	6786.16826 =	Mnmb/1.65*1000	
Strength is co	ontrolled by latera	al torsional buckling	
Ma (in-lbs)	6786		

WOOD TOP RAIL

Alloy 6063 – T6 Aluminum

Wood

2"x4" nominal I_{xx}: 0.984 in⁴; I_{yy}: 5.359 in⁴ C_{xx}: 0.75 in; C_{yy}: 1.75 in S_{xx}: 1.313 in³; S_{yy}: 3.063 in³

For wood use allowable stress from NDS Table 4A for lowest strength wood that may be used: $F_b = 725 \text{ psi}$ (mixed maple #1), $C_D = 1.6$, $C_F = 1.5$ $F'_b = 725*1.6*1.5 = 1,740 \text{ psi}$ $F'_b = 725*1.6*1.5*1.1 = 1,914 \text{ psi}$ for flat use (vertical loading)

By inspection, vertical loading controls Vertical loading: $M_{a,x}=1,914$ psi*1.313 in³ = 2,510"#

Horizontal loading: $M_{a,y}=1,740$ psi*3.063 in³ = 5,330"#

COMPOSITES: Composite materials, plastic lumber or similar may be used provided that the size and strength is comparable to the wood.

Glass Infill for wood cap rail:

Loading is primarily resisted by the top rail nut contribution from the glass infill piece may be taken into account.

b/t = 1"/0.07" = 14.3 < 22.8 (Elements supported on two edges OK) b/t = 0.558"/0.07" = 8.0 > 6.5 $F/\Omega = 27.8-0.81*8.0 = 21.3$ ksi for bottom elements supported one one side.

For vertical bending: $I_x = 0.0274in^4$ $S_x = 0.0406in^3$ $Z_x = 0.0721in^3$ M_p is controlled by $F_y1.5S_x$ in this case.

 $M_{p,x}/\Omega = 1.5*0.0406in^{3}*15.2ksi = 948''#$ Check local buckling over lower legs, $M_{a,x} = 21.3ksi*0.0406in^{3} = 865''# (controls)$

For horizontal bending: $I_y = 0.161in^4$ $S_y = 0.129in^3$ $Z_y = 0.203in^3$ M_p is controlled by $F_y1.5S_y$ in this case. $M_{p,x}/\Omega = 1.5*0.129in^{3*}15.2ksi = 2,940$ "# (controls)

CSYM

€SYM

ARS HANDRAIL TUBING

 $\begin{array}{l} 1\text{-}1/2"X1/8"\ 6063\text{-}T6\\ I=0.129\text{in}^4\\ Z=0.237\text{in}^3\\ R_b/t=0.75"/0.125"=6<70\ (\text{local}\\ \text{buckling does not apply}) \end{array} \tag{01.500 ± 020}$

Lateral torsional buckling does not apply to a round tube. $F/\Omega = 15.2ksi$ $M_a = 15.2ksi*0.237in^3 = 3,600$ "

Check bent handrail return:

Ø1.250

Maximum moment occurs at the upper connection to the post when the 200# live load is concentrated at the end of the cantilever.

Recall allowable hand rail moment = 3,600"# Allowable cantilever = 3,600#/200# = 18"

Hand Rail Splice/ Connection Block

Can be used to splice hand rails or attach to a face mount bracket.

 $\begin{array}{l} A = 0.321 in^2 \\ A_{v,x} = 0.161 in^2 \\ A_{v,y} = 0.226 in^2 \end{array}$

 $F_v/\Omega = 9.1$ ksi (For 6063-T6)

 $V_a = 0.161 in^{2*9.1} ksi = 1,470 \#$

In normal configurations the maximum shear carried by a hand rail is 200# < 1,470# OK.

When used to connect to a face mount end

bracket, the hand rail extends to the end of the connection block so loading is transferred directly to one of the 1/4" screws.

 $V_{max} = 200 \#$

Hole bearing assuming 0.1" thick 6063-T6 endplate, $V_a = 2*0.25$ "*0.1"*30ksi/3 = 500# > 200# OK

CRL QUICK CONNECT ALUMINUM HAND RAIL BRACKET

Loading 200 lb concentrated load or 50 plf distributed load

Grab rail bracket – 1-7/8" long Aluminum extrusion 6063-T6 Allowable load on bracket: Vertical load: Critical point @ 1.8" from rail to root of double radius, t = 0.25" M = P*1.8" or WS*1.8" where P = 200#, W = 50 plf and S = tributary rail length to bracket. Determine allowable Moment: F_T = 20 ksi, F_C = 20 ksi From ADM Table 2-21 S_V = 1.875"*0.25²/6 = 0.0195 in³ M_{Vall} = 0.0195 in³*20 ksi = 390"#

Determine allowable loads: For vertical load: $P_{all} = 390"\#/1.8" = 217\#$ $S_{all} = 217\#/50plf = 4'4"$

Vertical loading will control bracket strength.

Allowable load may be increased proportionally by increasing the bracket length. For 5' Post spacing: 5'/4.33'*1.875'' = 2.165'' - 2.11/64''

Grab rail connection to the bracket:

Two countersunk self drilling #8 screws into 1/8" wall tube Shear $- 2F_{tu}Dt/3 = 2*30ksi*0.164"*0.125"/3*2$ screws = 820# (ADM 5.4.3) Tension $- 1.2DtF_{ty}/3 = 1.2*.164"*0.125"*25ksi*2$ screws/3 = 410#

For residential installations only 200# concentrated load is applicable. Connection to support: Maximum tension occurs for outward Horizontal force: Determine tension from Σ M about C 0 = P*5" - T*0.875"T = 200#*4.12"/0.875" = 942#From Σ forces – no shear force in anchor occurs from horizontal load

Vertical force:

Determine tension from ΣM about C 0= P*2.5" - T*0.875" T = 200#*2.5"/0.875" = 571# From Σ forces - Z = P = 200#

CONNECTION TO STANDARD POST (0.1" WALL)

For 200# bracket load: For handrails mounted to 0.1" wall thickness aluminum tube. One Pan head self drilling #14 Shear – $2F_{tu}Dt/3$ (ADM 5.4.3) 2*38ksi*0.25"*0.1"/3= 633#Tension – Pullout ADM 5.4.2.1 $P_t = 1.2DtF_{tu}/3 = 1.2*.25*.1*38ksi/3 = 380#$

Screw tension strength, T_a=1,605# (ESR 1976)

Where a washer and nut is used only one screw/ bolt is required.

For no washer and nut: Required number of screws = 942#/380# => 3 screws minimum

WELDED CORNERS

All top rails are 6063-T6 and welded with 5356 filler. The welds develop the full thickness of the part attached.

Check weld strength: $F_u = 35$ ksi $R_n/\Omega = 0.6*35$ ksi*t/1.95 = (10.8t)kli

Check base metal affected by weld: $F_{u,w} = 11.6$ ksi $F_{y,w} = 8$ ksi $R_n/\Omega = 11.6$ ksi*t/1.95 = (5.95t)kli < (10.8t)kli

The above calculations show that the base metal in the weld affected zone is by far the limiting failure mode. It can be conservatively assumed the failure section is perpendicular to the top rail. Therefore, the angle of the miter does not matter, since the failure section is not at the miter.

Therefore moment strength is calculated as $F_{y,w}Z/1.65$. Moment strengths at the corners are provided below for reference. However, in normal use the corners will not be subject to high moment loading. The splices used to connect the corner to the straight pieces of top rail will not transfer significant moment.

Using the welded corner bracket allows the corner post to braced in each direction. Therefore, the corner bracket may have to transfer significant force via shear and axial force. The shear strength is the limiting failure mode by inspection.

Assume shear is carried by the horizontal elements only. Shear strength is calculated as $V_a=0.6Fy_w*b_e*t/1.65$. Where the effective width, b_e is taken as the width of the main horizontal element and t is taken as the thickness of that element.

Top Rail	b _e (in)	t (in)	Z_x (in ³)	Z _y (in ³)	$R_{n}\!/\Omega\left(lbs\right)$	M_x/Ω (in-lbs)	M_y/Ω (in-lbs)
200	3	0.087	0.398	1.03	759	1930	4994
300	2	0.086	0.583	0.583	500	2827	2827
320	2.3	0.075	0.243	0.669	502	1178	3244
350	2.5	0.07	0.355	0.88	509	1721	4267
400	4.5	0.086	0.776	1.94	1126	3762	9406
500	5	0.086	0.392	1.38	1251	1901	6691
1-1/2" HR	1.5	0.125	0.237	0.237	545	1149	1149

The minimum allowable load at the corner is 500#. Maximum loads expected to occur at the corner are between 200 and 300#. This would occur from a 200# load directly at the corner, or from a 50plf load where the corner is braced by a long stretch of posts. Cases where wind loading may be concern will be controlled by the bottom rail attachment. Therefore, the welded brackets are not a design concern in typical configurations.

STANDARD POST RAIL CONNECTION BLOCK

Can be used to connect top rails to standard or 4"x4" post face, walls or other end butt connection.

Typical RCBS length is 1"

Top rail snaps over block and is secured with either silicone adhesive or #8 tek screws.

Connection strength to post or wall: (2) #10x1.5" 55 PHP SMS Screw

Check shear @ post (6005-T5) F_{upostx} dia screw x Post thickness x SF Eq 5.4.3-2 V= 38 ksi '0.19" · 0.1" · $\frac{1}{3}$ = 240#/screw for standard post

Since minimum of 2 screws used for each, Allowable load = $2 \cdot 240\% = 480\%$

Screw tilting: $4.2(t_2{}^3D)^{1/2}F_{tu2} = 4.2(0.1{}^30.19)^{1/2}38 \text{ ksi} = 2,200$

For 4"x4" post: V= 38 ksi $\cdot 0.19$ " $\cdot 0.125$ " $\cdot \frac{1}{3 \text{ (FS)}} = 300 \text{ #/screw}$

Since minimum of 2 screws used for each, Allowable load = 2' 300# = 600#

Connections to walls and other surfaces is dependent on supporting material. Alternative fasteners may be used for connections to steel, concrete or wood.

WALL MOUNT END CAPS

End cap is fastened to the top rail with 2) #10x1" 55 PHP SMS Screws

2x Fupostx dia screw x Cap thickness x SF Eq J.5.5.1 Screws to top rail V=0.5*0.15*38ksi ≤2*38 ksi •0.19" • 0.15" = 3 (FS) 722#/screw, 1,444# per connection

Screws to wall for shear on screw: V=0.325*0.15*38ksi ≤2*38 ksi •0.19" • 0.15" = 618# 3 (FS)

Connection to wall shall use either:

#14x1-1/2" wood screw to wood, minimum 1" penetration into solid wood.

Allowable load = 2*175# = 350#Wood shall have a $G \ge 0.43$ From ADM Table 11M

For connection to steel studs or sheet metal blocking Use #12 self drilling screws. Minimum metal thickness is 18 gauge, 43 mil (0.0451") Allowable load = 280#/screw

Steel	1/4 -14 Screw		#12-14 Screw		#10-16 Screw *		#8-18 Screw *		#6 Screw *	
Thinnest Component	Shear	Pullout	Shear	Pullout	Shear	Pullout	Shear	Pullout	Shear	Pullout
0.1017"	1000	320	890	280	780	245	675	210	560	175
0.0713"	600	225	555	195	520	170	470	145	395	125
0.0566"	420	180	390	155	370	135	340	115	310	95
0.0451"	300	140	280	120	260	105	240	90	220	75
0.0347"	200	110	185	95	175	80	165	70	150	60

Notes:

1. Design values are based on CCFSS Technical Bulletin Vol. 2, No. 1 which outlines the proposed AISI Specification provisions for Based on Fy = 33ksi, Fu = 45ksi minimum. Adjust values for other steel strengths.

* = Refer to Table 1 for limits on recommended total steel thickness of connected parts

Min screw edge distance ≥ 0.3 " Center of hole to edge

Wall Mounted End Caps

For connection to masonry or concrete use 3/16 screw-in anch	or
Page 3 of 3	

ER-5878

TABLE 3-ALLOWABLE TENSION AND SHEAR VALUES FOR TAPPER SCREW ANCHORS INSTALLED IN NORMAL-WEIGHT CONCRETE^{1,2}

SCREW	SCREW ANCHOR	MINIMUM	ALLOWABLE TENSION (pounds)			ALLOWABLE TENSION (pounds)				ALLOWABLE
ANCHOR	MATERIAL AND	EMBEDMENT ^a (inches)	With Special Inspection ⁴		Witho	ut Special Inspe	ection⁵	SHEAR [®] (pounds)		
(inch)	(AS APPLICABLE)	(inclica)	Concr	ete Strength, f	′。 (psi)	Concr	ete Strength, f	′。(psi)	(pounda)	
			2000	3000	4000	2000	3000	4000		
	Carbon steel,	1	90	90	90	45	45	45	175	
³ / ₁₆	Perma-Seal	1 ¹ / ₂	180	215	255	90	110	130	230	
	coated	1 ³ / ₄	295	335	375	150	170	190	235	

300 and 350 Series end caps use same fasteners and have identical strengths

MID RAIL

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Mid Rail Vertical Loading

Section	Properties
---------	------------

lx (in4)	0.111
Sx (in3)	0.107
Zx (in3)	0.177
ly (in4)	0.561
J (in4)	0.000532
b	1.914
t	0.07

Cw (in6)	0.0486
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is accordi	ng to the 2020 ADM Desi	ign Table 2-2.	1 and Chapter	
F4.	/ Vielding:				
Support Cond	dition				
	w elements ur	der uniform compressio	n	-	
λ	27.3428571 =	Rb/t			
λ1	31.2				
λ2	189				
F/Ω (ksi)	15.2 =	15.2	2	for λ<λ1	
		18.5-0.593λ [.]	^0.5	for $\lambda 1 < \lambda < \lambda 2$	
		3776/(λ(1+λ	^0.5/35)^2)	for λ2<λ	
For λ<λ1, loco as the minim	For $\lambda < \lambda 1$, local buckling does not apply and the moment strength is calculated				
		1.001 9/ 32			
Mn/Ω (in-lbs)	2432 =	F/Ω*1000(ki	ips/lbs)*min(.	Zx or 1.5Sx)	
Rupture Stren	gth				
Fu/Ω	15.3846154				
Znet	0.177				
Mn/Ω (in-lbs)	2723.07692 =	Znet*Fu/Ω*.	1000kips/lbs		
Lateral Torsio	nal Buckling:				
Lb (in)	72				
Cb	1.14				
C1	0.5	C2	0.5	5	
U (in)	0 =	С1*д0-С2*в	x/2		
Me	6.43064782 =	See 2015 AD	0M F.4-9		
λ	40.7263121 =	2.3(Lb*Sx/(I)	y*J)^0.5)^0.5		
λ <cc, inelasti<="" th=""><th>c buckling appl</th><th>ies</th><th></th><th></th></cc,>	c buckling appl	ies			
Mnmb (in-kip	3.02993393 =	Mp(1-λ/Cc)+	-π^2*E*λ*Sx/	/Cc^3	
Ma (in-lbs)	1836.32359 =	Mnmb/1.65	*1000		
Strength is co	ntrolled by late	eral torsional huckling			
Ma (in-lhc)	1836	and consional backing			

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS		
Extrusion	Mid Rail Horizontal Loading		
Section Prop	erties		
lx (in4)	0.181	Cw (in6)	0.0486
Sx (in3)	0.212	βx (in)	0
Zx (in3)	0.239	g0 (in)	0
ly (in4)	0.111		
J (in4)	0.000532		
b	1.47		
t	0.07		

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment strei	ngth is according to	the 2020 ADM Design Tal	ble 2-21 and Chapter
Local buckling	/ Yielding:		
Support Cond	lition		
Flat elemen	t under uniform com	pression supported on b	oth sides 🔶
λ	21 =	b/t	
λ1	22.8		
λ2	39		
F/Ω (ksi)	15.2 =	15.2	for λ<λ1
		19-0.170λ	for λ1<λ<λ2
		484/λ	for λ2<λ
For λ<λ1, locd as the minimu	al buckling does not o um of Zfy/Ω or 1.5SF	apply and the moment str y/ Ω	rength is calculated
Mn/Ω (in-lbs)	3621 =	F/Ω*1000(kips/lbs)*min(Zx or 1.5Sx)
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.239		
Mn/Ω (in-lbs)	3676.92308 =	Znet*Fu/Ω*1000ki	ips/lbs
Lateral Torsion	nal Buckling:		
Lb (in)	72		
Cb	1.14		
C1	0.5	C2	0.5
U (in)	0 =	С1*g0-С2*вх/2	
Me	2.86045279 =	See 2015 ADM F.4	-9
λ	85.9530116 =	2.3(Lb*Sx/(Iy*J)^0.	.5)^0.5
λ>Cc elastic b	uckling applies		
Mnmb (in-kip	3.218447 =	π^2*E*Sx/λ^2	
Ma (in-lbs)	1950.57394 =	Mnmb/1.65*1000	
Strength is co	ontrolled by lateral to	orsional buckling	
Ma (in-lbs)	1951		

Filler for picket infill inserts into bottom of rail to attach 3/4" pickets. May be used with either Mid Rail or standard bottom rail. $I_y = 0.0386 \text{ in}^4$; $S_y = 0.0515 \text{ in}^3$ For infill: $M_a = 0.0515*15 \text{ ksi} = 773"\#$

Mid rail receives wind loading from the glass infill and the 50# concentrated live load.

Allowable moment under horizontal loading = 1,950"# Allowable span as limited by 50# concentrated live load = 1,950"#/(50#/4) = 156" > 72" OK Allowable span as limited by wind load = 1,950"#/(P/12*(H/2)/8)^{1/2} Where P = wind pressure in PSF and H = infill height in feet. The table below shows allowable spans with respect to different wind loads and infill heights.

Guard Rail Mid/Bottom Rail Design

System:	ARS
Rail:	Mid Rail

Extrusion Properties Properties:

E (psi)	10100000	
ly (in^4)	0.181	
Ma (in-lbs)	1950	
∆a (in)	L/60	

Load Cases:

 50# concentrated load at mid span

 M=50#L/4

 Δ=50#*L^3/(48EI)

 Lmax=MIN(Ma*4/50 or (48EI/(50*60))^1/2

 Lmax (in)
 156

Wind Load

M=P/12*(H/2)*L^2/8 Δ=5*P/12*(H/2)*L^4/(384EI) Lmax=MIN((Ma/(P/12*(H/2)/8))^(1/2) or (384EI*12*2/(60*5*PH))^1/3

Allowable rail span with respect to infill height and wind load is shown in the table below.

		P (psf)		
		25	50	75
	1.5	99.92	70.65	57.69
	2	86.53	61.19	49.96
(⋣) 1 1 2.5 3 3.5 4 4.5	77.40	54.73	44.69	
	70.65	49.96	40.79	
	3.5	65.41	46.25	37.77
	4	61.19	43.27	35.33
	4.5	57.69	40.79	33.31
	5	54.73	38.70	31.60

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Picket Bottom Rail Vertical Loading

Section Properties

lx (in4)	0.119
Sx (in3)	0.103
Zx (in3)	0.181
ly (in4)	0.522
J (in4)	0.00154
b	1.56
t	0.132

Cw (in6)	0.0526
βx (in)	-2.88
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according	to the 2020 ADM Design Table .	2-21 and Chapter	
F4.	tur 24 ELLA			
Local buckling	/ Yielding:			
Support Cond	dition			
Flat elemen	t under uniform c	ompression supported on both	sides 🔷	
λ	11.8181818 =	b/t		
λ1	22.8			
λ2	39			
F/Ω (ksi)	15.2 =	15.2	for λ<λ1	
		19-0.170λ	for λ1<λ<λ2	
		484/λ	for λ2<λ	
as the minim	um of Zfy/Ω or 1.5	SFy/Ω	in/Ty or 1 FCy	
Mn/Ω (in-lbs)	2341 =	F/Ω*1000(kips/lbs)*n	nin(Zx or 1.5Sx)	
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.181			
Mn/Ω (in-lbs)	2784.61538 =	Znet*Fu/Ω*1000kips/	lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2	0.5	
U (in)	0.72 =	C1*g0-C2*8x/2		
Me	20.7754615 =	See 2015 ADM F.4-9	See 2015 ADM F.4-9	
λ	22.2307355 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5		
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th><th></th></cc,>	c buckling applies			
Mnmb (in-kip	3.71631382 =	<i>Mp(1-λ/Cc)+π^2*E*λ</i>	*Sx/Cc^3	
Ma (in-lbs)	2252.31141 =	Mnmb/1.65*1000		
Strength is co	ontrolled by latera	l torsional buckling		
Ma (in-lbs)	2252			

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Picket Bottom Rail Horizontal Loading

Section Properties

lx (in4)	0.188
Sx (in3)	0.221
Zx (in3)	0.262
ly (in4)	0.119
J (in4)	0.00154
b	1.44
t	0.07

Cw (in6)	0.0526
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is according to	the 2020 ADM Design Table	2-21 and Chapter	
F4.	/			
Local buckling	/ Yielding:			
Support Cond	lition			
Flat elemen	t under uniform co	mpression supported on both	n sides 🗧 🗬	
λ	20.5714286 =	b/t	20 B3	
λ1	22.8			
λ2	39			
F/Ω (ksi)	15.2 =	15.2	for λ<λ1	
· · · ·		19-0.170λ	for λ1<λ<λ2	
		484/λ	for $\lambda 2 < \lambda$	
For λ<λ1, loca as the minim	al buckling does not um of Zfy/Ω or 1.5S	t apply and the moment stren Fy/Ω	gth is calculated	
Mn/Ω (in-lbs)	Mn/Ω (in-lbs) 3970 = $F/\Omega^{*1000(kips/lbs)*min(Zx \text{ or } 1.55x)}$			
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.262			
Mn/Ω (in-lbs)	4030.76923 =	Znet*Fu/ Ω *1000kips,	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2	0.5	
U (in)	0 =	C1*g0-C2*6x/2		
Me	4.5116951 =	See 2015 ADM F.4-9		
λ	69.8774141 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5		
λ <cc, inelasti<="" th=""><th colspan="4">λ<cc, applies<="" buckling="" inelastic="" th=""></cc,></th></cc,>	λ <cc, applies<="" buckling="" inelastic="" th=""></cc,>			
Mnmb (in-kip	3.92598112 =	Mp(1-λ/Cc)+π^2*E*λ	*Sx/Cc^3	
Ma (in-lbs)	2379.38249 =	Mnmb/1.65*1000		
Strenath is controlled by lateral torsional buckling				
Ma (in-lbs)	2379			

Guard Rail Mid/Bottom Rail Design

System:	ARS
Rail:	Picket Bottom Rail

Extrusion Properties Properties:

E (psi)	10100	000
ly (in^4)	0.	188
Ma (in-lbs)	2	380
∆a (in)	L/60	

Load Cases:

50# concentrated load at mid span

M=50#L/4 Δ=50#*L^3/(48EI) Lmax=MIN(Ma*4/50 or (48EI/(50*60))^1/2 Lmax (in) 174.300889 Glass Bottom Rail

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Glass Bottom Rail Vertical Loading

Section Properties

lx (in4)	0.0991
Sx (in3)	0.0968
Zx (in3)	0.165
ly (in4)	0.192
J (in4)	0.000695
b	0.75
t	0.063

Cw (in6)	0.0623
βx (in)	-2.12
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment stre	ngth is accordin	g to the 2020 ADM Design Tal	ble 2-21 and Chapter	
F4.	1.00 1.00			
Local buckling	/ Yielding:			
Support Cond	dition			
Flat elemen	t under uniform	compression supported on b	oth sides 🗧 🗬	
λ	11.9047619 =	b/t		
λ1	22.8			
λ2	39			
F/Ω (ksi)	15.2 =	15.2	for λ<λ1	
		19-0.170λ	for λ1<λ<λ2	
		484/λ	for λ2<λ	
For λ<λ1, loce	al buckling does	not apply and the moment sti	rength is calculated	
as the minim	um of Zfy/Ω or 1	1.5SFy/Ω		
Mn/Ω (in-lbs)	2200 =	F/Ω*1000(kips/lbs	F/Ω^*1000 (kips/lbs)*min(Zx or 1.5Sx)	
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.165			
Mn/Ω (in-lbs)	2538.46154 =	Znet*Fu/ Ω *1000ki	ips/lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2	0.5	
U (in)	0.53 =	C1*g0-C2*Bx/2		
Me	7.06342936 =	See 2015 ADM F.4	See 2015 ADM F.4-9	
λ	36.9607211 =	2.3(Lb*Sx/(Iy*J)^0	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" th=""><th>c buckling applie</th><th>es</th><th></th></cc,>	c buckling applie	es		
Mnmb (in-kip	2.92188822 =	<i>Mp(1-λ/Cc)+π^2*E</i>	<i>Mp</i> (1-λ/Cc)+π^2*E*λ*Sx/Cc^3	
Ma (in-lbs)	1770.84134 =	Mnmb/1.65*1000		
Strength is controlled by lateral torsional buckling				
Ma (in-lbs)	1771			

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	Glass Bottom Rail Horizontal Loading

Section Properties

lx (in4)	0.192
Sx (in3)	0.228
Zx (in3)	0.269
ly (in4)	0.0991
J (in4)	0.000695
b	1.41
t	0.063

Cw (in6)	0.0623
βx (in)	0
g0 (in)	0

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Сс	78

Moment stre	ngth is according to	o the 2020 ADM Design Table	2-21 and Chapter	
F4.				
Local buckling	/ Yielding:			
Support Cond	lition			
Flat elemen	t under uniform co	mpression supported on both	n sides 🔷	
λ	22.3809524 =	b/t		
λ1	22.8			
λ2	39			
F/Ω (ksi)	15.2 =	15.2	for λ<λ1	
		19-0.170λ	for λ1<λ<λ2	
		484/λ	for λ2<λ	
For λ<λ1, loco	al buckling does not	t apply and the moment stren	gth is calculated	
	uni 0j 2j y/ 12 0r 1.55	<i>DF Y/ S2</i>		
Mn/Ω (in-lbs)	4076 =	F/Ω*1000(kips/lbs)*n	F/Ω *1000(kips/lbs)*min(Zx or 1.5Sx)	
Rupture Stren	gth			
Fu/Ω	15.3846154			
Znet	0.269			
Mn/Ω (in-lbs)	4138.46154 =	Znet*Fu/Ω*1000kips/	lbs	
Lateral Torsio	nal Buckling:			
Lb (in)	72			
Cb	1.14			
C1	0.5	C2	0.5	
U (in)	0 =	C1*g0-C2*8x/2		
Me	3.08001451 =	See 2015 ADM F.4-9	See 2015 ADM F.4-9	
λ	85.901669 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5		
λ>Cc elastic b	uckling applies	(a)		
Mnmb (in-kip	3.43282404 =	π^2*E*Sx/λ^2		
Ma (in-lbs)	2080.49942 =	Mnmb/1.65*1000		
Strength is co	ontrolled by lateral	torsional buckling		
Ma (in-lbs)	2080	5		

Guard Rail Mid/Bottom Rail Design

System: ARS Rail: Glass Bottom Rail

Extrusion Properties Properties:

E (psi)	101	00000
ly (in^4)		0.192
Ma (in-lbs)		2080
∆a (in)	L/60	

Load Cases:

50# concentrated load at mid span

M=50#L/4 Δ=50#*L^3/(48EI) Lmax=MIN(Ma*4/50 or (48EI/(50*60))^1/2 Lmax (in) 166.4

Wind Load

M=P/12*(H/2)*L^2/8 Δ=5*P/12*(H/2)*L^4/(384EI) Lmax=MIN((Ma/(P/12*(H/2)/8))^(1/2) or (384EI*12*2/(60*5*PH))^1/3

Allowable rail span with respect to infill height and wind load is shown in the table below.

		25	50	75
	1.5	103.20	72.97	59.58
	2	89.37	63.19	51.60
	2.5	79.94	56.52	46.15
ft)	3	72.97	51.60	42.13
н (3.5	67.56	47.77	39.00
	4	63.19	44.69	36.49
	4.5	59.58	42.13	34.40
	5	56.52	39.97	32.63

Glass bottom rail may be reinforced with the RCB extrusion or a 7/16" min thickness x 1-1/2" aluminum flat bar.

 $I_y = 0.113in^4$ (For RCB, flat bar has greater stiffness)

The bottom rail is stiffer and has more slender elements so it can be assumed to control the overall strength.

 $I_{net} = 0.113in^4 + 0.192in^4 = 0.305in^4$

 $M_a = 2,080"\#*0.305in^4/0.192in^4 = 3,300"\#$

Guard Rail Mid/Bottom Rail Design

System: ARS Rail: Glass Reinforced Bottom Rail

Extrusion Properties Properties:

E (psi)	10100000	
ly (in^4)	0.305	
Ma (in-lbs)	3300	
∆a (in)	L/60	

Load Cases:

50# concentrated load at mid span

M=50#L/4 Δ=50#*L^3/(48EI) Lmax=MIN(Ma*4/50 or (48EI/(50*60))^1/2 Lmax (in) 222.009009

Wind Load

M=P/12*(H/2)*L^2/8 Δ=5*P/12*(H/2)*L^4/(384EI) Lmax=MIN((Ma/(P/12*(H/2)/8))^(1/2) or (384EI*12*2/(60*5*PH))^1/3

Allowable rail span with respect to infill height and wind load is shown in the table

	below.				
		P (psf)			
		25	50	75	
	1.5	129.98	91.91	75.05	
ft)	2	112.57	79.60	64.99	
	2.5	100.69	71.20	58.13	
	3	91.91	64.99	53.07	
н (3.5	85.09	60.17	49.13	
	4	79.60	56.28	45.96	
	4.5	75.05	53.07	43.33	
	5	71.20	50.34	41.10	

Rail fasteners -Bottom rail connection block to post Typical RCB length is 1" #10x1.5" 55 PHP SMS Screw Check shear @ post (6005-T5) 2x F_{upost}x dia screw x Post thickness x SF Eq 5.4.3-2 V= 38 ksi $\cdot 0.19$ " $\cdot 0.1$ " $\cdot \frac{1}{3 \text{ (FS)}} =$

V = 240 #/screw

Screw tilting: $4.2(t_{2}{}^{3}D){}^{1/2}F_{tu2} = 4.2(0.1{}^{3}0.19){}^{1/2}38\ ksi = 2,200$

Since minimum of 2 screws used for each Allowable load = $2 \cdot 240\# = 480\#$

Rail Connection to RCB 2 screws each end #8 Tek screw to 6063-T6 ADM Eq. 5.4.3-1 2*30ksi'0.164"'0.07"' 1/3= 230#/screw Allowable shear = 2*230 = 460# OK

PICKETS 3/4" ROUND

The 50# concentrated infill load controls picket design. Pickets will be loaded about their strong axis.

For pickets at 4" O.C. max, the 50# live load over 1 square foot will be carried by 3 pickets minimum. For maximum rail height of 60", $M_{max} = 50\#/3*60"/4 = 250"\#$ The calculations below show $M_a = 423"\# > 250"\#$ OK $\Delta = 50\#/3*60"'3/(48*10.1*10^{6*}0.00906in^4) = 0.82"$ $L/\Delta = 60"/0.82" = 73 > 60$ OK The pickets are OK up to the maximum 60" rail height considered for the ESR.

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	
Extrusion	

ARS 3/4" Round Picket Strong Axis

Section Prop	erties
lx (in4)	0.00906
Sx (in3)	0.0221
Zx (in3)	0.0336
ly (in4)	0.00827
J (in4)	0.016
b	0.375
t	0.062

Cw (in6)	0
βx (in)	0.0774
g0 (in)	0

Aluminum Properties

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Page 215 of 276

Moment stre	ngth is accordi	ing to the 20	20 ADM Desig	n Table 2-22	1 and Chapter
F4.	/ Violding:				
Support Con	dition				
Round profi	les				$\overline{\bullet}$
λ	6.0483871 =	=	Rb/t		
λ1	70				
λ2	189				
F/Ω (ksi)	23.5191103 =	:	27.7-1.70λ^0 18.5-0.593λ^ 3776/(λ(1+λ^	.5 0.5 0.5/35)^2)	for λ<λ1 for λ1<λ<λ2 for λ2<λ
For λ<λ1, loco as the minim	al buckling doe um of Zfy/Ω or	es not apply 1.5SFy/Ω	and the mome	nt strength	is calculated
Mn/Ω (in-lbs)	502 =	=	F/Ω*1000(kip	s/lbs)*min(2	Zx or 1.5Sx)
Rupture Stren	gth				
Fu/Ω	15.3846154				
Znet	0.0336				
Mn/Ω (in-lbs)	516.923077 =	=	Znet*Fu/Ω*1	000kips/lbs	
Lateral Torsio	nal Buckling:				
Lb (in)	72				
Cb	1.32				
C1	0.5		C2	0.5	5
U (in)	-0.01935 =	=	С1*д0-С2*вх	/2	-
Me	4.09389441 =		See 2015 ADM	N F.4-9	
λ	23.1973501 =	-	2.3(Lb*Sx/(Iy*J)^0.5)^0.5		
λ <cc, inelasti<="" th=""><td>c buckling app</td><td>lies</td><td></td><td></td><td></td></cc,>	c buckling app	lies			
Mnmb (in-kip 0.69787054 = $Mp(1-\lambda/Cc)+\pi^{2}E^{*}\lambda^{*}Sx/Cc^{3}$					
Ma (in-lbs)	422.951845 =	=	Mnmb/1.65*	1000	
Strenath is co	ontrolled by lat	eral torsion	al buckling		
Ma (in-lbs)	423				
#10 screw in to top and bottom infill pieces. Shear strength = $2x F_{upost}x$ dia screw x t_{rail} x SF ADM Eq 5.4.3-2 V= 38 ksi ·0.19" · 0.1" · <u>1</u> = 240# > 200# OK <u>3 (FS)</u>

Note on shear loads:

Maximum shear assuming full 50# load acts on a single picket is under 50# Picket cross-sectional area for the round pickets is 0.17 in²

f_v < 50/0.17 = 294 psi <<< 9,200 psi

As this will occur at the ends of the picket where the bending moment is 0 and will be 0 at the peak moment further consideration of the shear on the pickets isn't warranted.

PICKETS 3/4" SQUARE Area: 0.288 sq in Perim: 6.03 in 3/4 For pickets at 4" O.C. max, the 50# live load over 1 lxx: 0.0196 in^4 square foot will be carried by 3 pickets minimum. lyy: 0.0190 in^4 For maximum rail height of 60", $M_{max} = 50\#/3*60"/4 =$ Kxx: 0.261 in Kyy: 0.257 in 250"# The calculations below show $M_a = 618"\# > 250"\# OK$ Cxx: 0.392 in Cyy: 0.376 in $\Lambda = 50 \# / 3*60^{3} / (48*10.1*10^{6} * 0.0148 \text{ in}^4) = 0.50^{3}$ Sxx: 0.050 in^3 $L/\Delta = 60^{\circ}/0.50^{\circ} = 120 > 60 \text{ OK}$ Syy: 0.051 in^3 The pickets are OK up to the maximum 60" rail height considered for the ESR.

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	3/4" Square Picket Strong Axis

Section Properties

lx (in4)	0.0148
Sx (in3)	0.0365
Zx (in3)	0.0486
ly (in4)	0.0138
J (in4)	0.0206
b	0.63
t	0.062

Cw (in6)	0
βx (in)	0.0744
g0 (in)	0

Aluminum Properties

Alloy:	6063-T6
Fu (ksi)	30
Fy (ksi)	25
E (ksi)	10100
Cc	78

Moment Strength

Moment stre	ngth is according	to the 2020 ADM Design Tab	ole 2-21 and Chapter
F4.			
Local buckling	/ Yielding:		
Support Cond	lition		
Flat elemen	t under uniform c	compression supported on be	oth sides
λ	10.1612903 =	b/t	
λ1	22.8		
λ2	39		
F/Ω (ksi)	15.2 =	15.2	for λ<λ1
,,,		19-0.170λ	for $\lambda 1 < \lambda < \lambda 2$
		484/λ	for λ2<λ
For λ<λ1, loca as the minim	al buckling does n um of Zfy/Ω or 1.5	ot apply and the moment str 5SFy/Ω	ength is calculated
Mn/Ω (in-lbs)	736 =	F/Ω*1000(kips/lbs))*min(Zx or 1.5Sx)
Rupture Stren	gth		
Fu/Ω	15.3846154		
Znet	0.0486		
Mn/Ω (in-lbs)	747.692308 =	Znet*Fu/Ω*1000ki	ps/lbs
Lateral Torsio	nal Buckling:		
Lb (in)	72		
Cb	1.32		
C1	0.5	C2	0.5
U (in)	-0.0186 =	С1*g0-С2*вх/2	
Me	6.00007174 =	See 2015 ADM F.4-	9
λ	24.6251435 =	2.3(Lb*Sx/(Iy*J)^0.	5)^0.5
λ <cc, inelasti<="" th=""><th>c buckling applies</th><th></th><th></th></cc,>	c buckling applies		
Mnmb (in-kip	1.02021906 =	Mp(1-λ/Cc)+π^2*E	*λ*Sx/Cc^3
Ma (in-lbs)	618.31458 =	Mnmb/1.65*1000	
Strength is co	ontrolled by latera	l torsional buckling	
Ma (in-lbs)	618	ana ang mang mang mang mang mang mang ma	

Connections Pickets to top and bottom rails direct bearing for lateral loads –ok #10 screw in to top and bottom infill pieces. Shear strength = $2x F_{upost}x$ dia screw x t_{rail} x SF ADM Eq 5.4.3-2 V= 38 ksi ·0.19" · 0.1" · <u>1</u> = 240# > 200# OK <u>3 (FS)</u>

CR LAURENCE ALUMINUM RAIL SYSTEM

Page 221 of 276

2/15/21

PICKETS 5/8" SQUARE FOR SERIES 100

For pickets at 4" O.C. max, the 50# live load over 1 square foot will be carried by 3 pickets minimum.

0.000492

0.868

0

For maximum rail height of 60", $M_{max} = 50\#/3*60"/4 = 250"\#$ The calculations below show $M_a = 340"\# > 250"\#$ OK $\Delta = 50\#/3*56"^{3}/(48*10.1*10^{6*}0.006618in^{4}) = 0.91"$ $L/\Delta = 56"/0.91" = 61 > 60$ OK The pickets are OK up to a 56" span which results in a 60" total rail height for normal configurations.

> Cw (in6) βx (in)

g0 (in)

Aluminum Extrusion Design

Aluminum extrusion strength is according to ADM 2020.

System	ARS
Extrusion	5/8" Picket For Series 100

Section Properties			
lx (in4)	0.006619		
Sx (in3)	0.02117		
Zx (in3)	0.02677		
ly (in4)	0.006619		
J (in4)	0.01125		
b	0.502		
t	0.062		

Aluminum	Properties	
Alloy:	6063-T6	
Fu (ksi)		
Fy (ksi) 2		
E (ksi)	10100	
Cc	78	

Moment strei	ngth is according	to the 2020 ADM Design Table 2-21 a	nd Chapter
F4.			
Local buckling	/ Yielding:		
Support Cond	lition		
Flat elemen	t under uniform o	compression supported on both sides	\$
λ	8.09677419 =	b/t	
λ1	22.8		
λ2	39		
F/Ω (ksi)	15.2 =	15.2 fc	or $\lambda < \lambda 1$
		19-0.170λ fo	or $\lambda 1 < \lambda < \lambda 2$
		484/λ fc	or $\lambda 2 < \lambda$
Mn/Ω (in-lbs)	406 =	F/Ω*1000(kips/lbs)*min(Zx d	or 1.5Sx)
			1 210000
Kupture Stren	gtn		
Fu/Ω	15.3846154		
Znet	0.02677		
Mn/Ω (in-lbs)	411.846154 =	Znet*Fu/Ω*1000kips/lbs	
Lateral Torsion	nal Buckling:		
Lb (in)	72		
Cb	1.32		
C1	0.5	C2 0.5	
U (in)	-0.217 =	C1*g0-C2*Bx/2	
Me	3.03826264 =	See 2015 ADM F.4-9	
λ	26.3547155 =	2.3(Lb*Sx/(Iy*J)^0.5)^0.5	
λ <cc, inelasti<="" td=""><td>c buckling applies</td><td>S</td><td></td></cc,>	c buckling applies	S	
Mnmb (in-kip	0.56032016 =	$Mp(1-\lambda/Cc)+\pi^2*E^*\lambda*Sx/Cc^*$	^3
Ma (in-lbs)	339.587978 =	Mnmb/1.65*1000	
Strength is co	ntrolled by later	al torsional buckling	
Ma (in-lbs)	340		

Moment Strength

10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com For uniform load – idealize deflection as triangular applying cable theory

 $C_{t} = \frac{Wl^{2}}{8\Delta}$

Solving for W = $\underline{C_t \ 8 \ \Delta}_{l^2}$

See spreadsheet pages based on 36' maximum cable length and 3" clear cable spacing.

Cable rail loading requirements Guardrail components 25 psf over entire area IBC 1607.7.1.2 Components 50 lbs Conc. load over 1 sf

Cable Strain:

 $\epsilon=\sigma/E$ and $\Delta_L=L~\epsilon$ $\Delta_L=L(T/A)/E=L(T/0.0276~in^2)/27~x~10^6~psi$

Maximum cable free span length = 60.5"/2-2.375" = 27.875"

Additionally cable should be able to safely support 200 lb point load such as someone standing on a cable. This is not a code requirement but is recommended to assure a safe installation.

Cable railing					
Cable deflection calculations					
Cable = $3/16$ dia (area in^2) =		0.0278			
Modulus of elas	sticity (E, psi) =	27000000			
Cable strain =C	$t/(A^*E) *L(in) =$	additional strain	from imposed l	oading	
Cable installation	on load (lbs) =	200			
Total Cable leng	gth (ft) =	36			
Cable free span	(inches) =	35			
Calculate strain	for a given disp	lacement (one span)		Imposed Cable load giving displ.	
delta (in)	strain (in)	Ct net (lb)	Ct tot (lbs)	Conc. Load (lb)	Uniform ld (plf)
0.25	0.00357	6.2	206.2	5.9	4.0
0.375	0.00803	13.9	213.9	9.2	6.3
0.55	0.01728	30.0	230.0	14.5	9.9
0.75	0.03213	55.7	255.7	21.9	15.0
1	0.05710	99.1	299.1	34.2	23.4
2	0.22783	395.3	595.3	136.1	93.3
2.5	0.35534	616.5	816.5	233.3	160.0
3	0.51056	885.8	1085.8	372.3	255.3
Cable railing					
Cable deflection calculations					
Cable = $1/8$ " dia (area in^2) =		0.0123			
Modulus of elasticity (E, psi) =		27000000			
Cable strain =C	$t/(A^*E) *L(in) =$	additional strain	from imposed l	oading	
Cable installation	on load (lbs) =	200			
Total Cable leng	gth (ft) =	36			
Cable free span	(inches) =	35			
Calculate strain	for a given disp	lacement (one sp	an)	Imposed Cable l	oad giving displ.
delta (in)	strain (in)	Ct net (lb)	Ct tot (lbs)	Conc. Load (lb)	Uniform ld (plf)
0.25	0.00357	2.7	202.7	5.8	4.0
0.375	0.00803	6.2	206.2	8.8	6.1
0.55	0.01728	13.3	213.3	13.4	9.2
0.75	0.03213	24.6	224.6	19.3	13.2
1	0.05710	43.8	243.8	27.9	19.1
2	0.22783	174.7	374.7	85.7	58.7
2.5	0.35534	272.5	472.5	135.0	92.6
3	0.51056	391.6	591.6	202.8	139.1

NOTE: Cable rail installations require special care to assure cables have adequate tension to provide the required resistance to infill loads. End posts and frame must have adequate strength to safely resist all cable loads.

Cable induced forces on posts:

		R	
\leftarrow	~	No cable ten	
€ → G	c 🗧	on iintermed	
\leq	5		
\leftarrow	\sim		
	5		
	1		
W W W W IN			

Cable tension forces occur where cables either change direction at the post or are terminated at a post.

Top rail acts as a compression element to resist cable tension forces. The top rail infill piece inserts tight between the posts so that the post reaction occurs by direct bearing.

For 400 Series top rail no infill is used. Top rail extrusion is attached to post with (6) #8 screws in shear with total allowable shear load of 6*325# = 1,950#Up to eight #8 screws may be used on a post if required to develop adequate shear transfer between the post and the 400 series top rail.

Bottom rail when present will be in direct bearing to act as a compression element.

When no bottom rail is present the post anchorage shall be designed to accommodate a shear load in line with the cables of 7*205#*1.25 = 1,784#

End post Cable loading Cable tension - 200#/ Cable no in-fill load $w = \frac{200\#}{3"} = 66.67\#/in$ $M_w = \frac{(39")^2 \cdot 66.67\#/in}{8} = 12,676\#"$

Typical post reactions for 200# installation tension : 11 cables*200#/2 = 1100# to top and bottom rails

For loaded Case

- 3 Cables @ center 220.7# ea based on 6' o.c. posts, 35" cable clear span post deflection will reduce tension of other cables.

 $\Delta = [Pa^{2}b^{2}/(3L) + 2Pa(3L^{2}-4a^{2})/24]/EI =$ $\Delta = [220.7^{*}15^{2*}24^{2}/(3^{*}39) + 220.7^{*}15(3^{*}39^{2}-4^{*}15^{2})/24]/(10,100,000^{*}0.863) = 0.086"$

2/15/21

Cable tension reduction for deflection will go from 200 at end cables to 271-220.7 at center, linear reduction = (200-50.3)/(39/2) = 7.7 pli

$$\begin{split} M_{conc} &= 220.7\# \bullet 15^{\circ}/2 + 220.7\# \bullet 18^{\circ} + (3*(200-7.7*3)) + (6*(200-7.7*6)) + \\ (9*(200-7.7*9)) + 12*(200-7.7*12) + 15*(200-7.7*15)/2 \\ M_{conc} &= 10,183\#^{\circ} \end{split}$$

Typical post reactions for 200# installation tension with 50# infill load: 11 cables*200#/2+3*(221-200)/2 = 1132# to top and bottom rails. Typical post reactions for 200# installation tension with 25 psf infill load: 11 cables*207.5#/2 = 1,141# to top and bottom rails.

For 200 # Conc load on middle cable tension

$$\begin{split} & 599.2 \# \text{ tension, post deflection will reduce tension of other cables} \\ \Delta &= [\text{Pa}^{2b^{2}}/(3\text{LEI}) = [599.2*18^{2}21^{2}/(3*39*10100000*0.863) = 0.084} \\ & \text{Cable tension reduction for deflection will go from 200 at end cables to 52 at center cables, linear reduction (200-52)/19.5" = 7.6 pli. \\ & \text{M}_{200} = 599.2 \# / 2 \bullet 18" + (3) \bullet (200-7.6*3) + (6) (200-7.6*6) + (9) (200-7.6*9) + (12) \\ & (200-7.6*12) + (15) (200-7.6*15) + (18) (200-7.6*18) / 2 = 11,200 \#" \end{split}$$

Post strength = 19,500"# (six screw post)

No reinforcement required. Note: post reinforcement may be required for other configurations. Standard Cable anchorage okay.

Typical post reactions for 200# installation tension with 200# infill load on center cable: $11 \text{ cables} \times 200\#/2 + (600\#-200)/2 = 1,300\#$ to top and bottom rails.

Typical post reactions for 200# tension with 200# infill load on top or bottom cable: 11 cables*200#/2+(600#-200)*33/36 = 1,467# to top and bottom rails.

Verify cable strength:

 $F_y = 110$ ksi Minimum tension strength = 1,869# for 1/8" 1x19 cable

 $\phi T_n = 0.85*110 \text{ ksi} * 0.0123 = 1,150\#$

 $T_s = \varphi T_n / 1.6 = 1,150 \# / 1.6 = 718 \#$

Maximum cable pretension based on maximum service tension @ 200# cable load is 440#:

A (im)	otrain (in)	C_{t} mot (lb)	C_{t} tot (lb_{c})	Conc. Load	Uniform ld
Δ (III)	stram (m)	Ct net (ID)	Ct tot (IDS)	(lb)	(plf)
0.19	0.00206	1.7	441.7	9.6	6.6
0.33	0.00622	5.1	445.1	16.8	11.5
2.437	0.33774	278.2	718.2	200.0	137.2

CRL Standard Cast Infills

Infill strength based on 50# concentrated load at center of infill: M = 50#*41.375"/4 = 517.2"#At center bending is resisted by three 3/4" square solid aluminum bars: $S = 3*0.75"^{3}/6 = 0.211 \text{ in}^{3}$

 $f_b = 517.2/0.211 = 2,452 \text{ psi} < 13.5 \text{ksi}/2 = 6.75 \text{ksi}$

For diamond pattern casting: at center moment is resisted by four diagonal cast elements: Two at 3/4" square and two at 1/2" x 3/4" $S = 2*0.75"_3/6 + 2*0.5*0.75"_2/6 = 0.234 \text{ in}^3$ M = 50*37.875"/4 = 473.44"# $f_b = 473.44"#/0.237 \text{ in}^3 = 1,998 \text{ psi}$

May be mixed with 3/4" square pickets.

Custom Water Jet and Laser Cut Infill Panels

Custom patterns cut to specification with maximum opening sizes smaller than 4".

Fabricated from 5052-H32 or stronger aluminum sheet Required strength based on a maximum panel width of 38" Per ADM Table 2-9 $F_b = 18$ ksi Design bending at centerline of plate: $M = 25psf^*3.17'^2/8 = 31.4'\# = 376.83''\#/ft$ Required minimum width of solid metal per foot of width: $S = b^*t^2/6 \ge 376.83''\#/(18,000 \text{ psi}) = 0.021 \text{ in}^3$

Determine required solid metal width based on thickness: $b = (0.021*6/t^2)$

For t = 1/4" $b = (0.021*6/0.25^2) = 2.02$ "/ft Design pattern so that there is a maximum of 9.98" of opening per foot. In example there is 4 holes per foot maximum hole size = 9.98/4 = 2.495"

For second pattern the minimum bar width per foot must be 2.02" per foot average. If panel is 5' wide the total bar width is: 5'*2.02"/ft = 10.1"There are 11 equivalent bars – 9 vertical and 2 diagonal: Average width = 10.1/11 = 0.92"

For t = 3/8" b = (0.021*6/0.375²) = 0.896"/ft Design pattern so that there is a maximum of 11.1" of opening per foot. Calculate the required metal area similar to the two example shown for 1/4" sheet.

GLASS STRENGTH FULLY TEMPERED INFILL PANELS

All glass is fully tempered glass conforming to the specifications of ANSI Z97.1, ASTM C 1048-97b and CPSC 16 CFR 1201. The average Modulus of Rupture for the glass F_r is 24,000 psi, $F_r = 24$ ksi typically used for design purposes. In accordance with IBC 2407.1.1 glass used as structural balustrade panels shall be designed for a safety factor of 4.0. Glass not used in guardrails may be designed for a lesser safety factor in accordance with ASTM E1300.

Values for the modulus of rupture, F_r, modulus of Elasticity, E and shear modulus, G for glass based on AAMA CW-12-84 *Structural Properties of Glass* (values are consistent with those used in ASTM E1300) are typically taken as:

 $F_r = 24,000 \text{ psi}$

E = 10,400 ksi is used as the standard value for common glass. While the value of E for glass varies with the stress and load duration this value is typically used as an average value for the stress range of interest.

G = 3,800 ksi: The shear component of the deflection tends to be very small, under 1% of the bending component and is therefore ignored.

 $\mu = 0.22$ Typical value of Poisson's ratio for common glasses.

 $v = 5x10^{-6}$ in/(inF°) Typical coefficient of thermal expansion.

The safety factor of 4 is dictated by the building code (IBC 2407.1.1). It is applied to the modulus of rupture since glass as an inelastic material does not have a yield point.

There is no deflection limits for the glass in guards other than practical limits for the opening sizes, retention in the frames and occupant comfort. Refer to ASTM E 1300-12a for a standard method of calculating deflections but the deflection limits are concerned with glazing in windows and similar parts of the building envelope rather than a free standing guard. IBC 2403.3 applies a limit of L/175 or 3/4" on the supporting frame for glass to be considered as fully supported along the frame element. From IBC Table 1604.3 footnote h similar types of construction have a limit of L/60.

The shear strength of glass tracks closely to the modulus of rupture because failure under shear load will be a tensile failure with strength limited by the modulus of rupture. Thus shear loads are transformed using Mohr's circle to determine the critical tension stress to evaluate the failure load. The safety factor of 4 is applicable to this case same as the bending case. Thus the shear stress is limited based on principal stresses of 0 and 6,000 psi to 6,000/2 = 3,000 psi. Bearing stress can be derived in a similar fashion with the principal stresses being -6,000 psi and 6,000 psi so the bearing stress = 6,000 psi.

Bending strength of glass for the given thickness:

 $I = 12^{"*}(t)^3 / 12 = (t)^3 in^3 / ft$

 $S = 12"*(t)^2/6= 2*(t)^2 in^3/ft$

 t_{ave} = Average glass thickness; t_{min} = minimum glass thickness allowed by standard For lites simply supported on two opposite sides the moment and deflection are calculated from basic beam theory

M_w = W*L²/8 for uniform load W and span L or EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 <u>elrobison@narrows.com</u> $M_p = P^*L/4$ for concentrated load P and span L, highest moment P @ center Maximum wind loads:

 $W = M_a * 8/L^2$ for uniform load W and span L (rail to rail distance)

Deflection can be calculated using basic beam theory:

 $\Delta = (1-v^2)5wL^4/(384EI)$ for uniform load

 $(1-v^2) = 0.9516$

Simplifying:

 $\Delta = [wL^4/t^3]/(10.07 \text{ x } 10^9) \text{for w in psf and } L \text{ in inches}$

For concentrated load:

 $\Delta = (1-v^2) PL^{3}/(48EI)$

Simplifying:

 $\Delta = PL^{3}/(5.246*10^{8}t^{3})$

Maximum allowable deflection: Use L/60 deflection limit for infill. This will prevent glass from deflecting enough to disengage from the frame.

For uniform load (wind load) Solving for w $w = [t^{3*1.676*10^8}]/L^3$ Solving for L $L = [(t^{3*1.676*10^8})/w]^{1/3}$ Solving for t $t = [L^3w/(1.676*10^8)]^{1/3}$ For Concentrated load Solving for P $P = (8.74*10^6t^3)/L^2$ Solving for L $L = [8.74*10^6*t^3/P]^{1/2}$

 $t = [PL^2/(8.74*10^6)]^{1/3}$

Guard Infill Design

System: ARS Infill Description: Monolithic Tempered Glass

Allowable Live Load Stress (psi)	6000
Allowable Wind Load Stress (psi)	10600
Young's modulus (psi)	10400000

Load Cases:

50# Concentrated Load At Mid Span M = 50#*Span/(1ft*4) $\Delta = 50\#*span3/(48EI)$ Max span = min(S*6000psi*4/50 or(48EI/(50*60))^(1/2)) $I=t_{min}^{3}$ $S=2t^{2}$

Allowable Spans For 50# Live Load

t _{nom}	t _{min}	I (in⁴)	S (in ³)	Max span (in)
	1/4	0.219 0.01050	346 0.09592	2 41.81
	5/16	0.292 0.02489	0.17052	8 64.37
	3/8	0.355 0.04473	888 0.2520	5 86.28

Wind Load

M = W/12Span²/8 Δ = 5*W/12*span⁴/(384EI) Max span = min((S*6000psi*8/W)^{1/2} or(384EI/(5*W/12*60))^(1/3))

Allowable Spans With Respect To Wind Loading

	Wi	nd Load (psf)	
t _{nom} (in)	25	50	75
1/4	40.64	32.25	28.18
5/16	54.18	43.01	37.57
3/8	65.88	52.29	45.68

Laminated Glass Panels

The 2015 and 2018 IBC require laminated glass panels where a walking surface is directly below the guard.

Glass sizes checked in this report are 1/4", 5/16" and 7/16"

Glass is assumed to use a PVB interlayer with a shear modulus (G) of 140psi. This low value for G accounts for high exterior temperatures that may be present in the southern part of the US and Hawaii.

Effective thickness calculated according to ASTM E1300 appendix X11.

Variable	Description
H1 & H2	Glass pane thicknesses
Hv	Interlayer thickness
E	Young's Modulus
g	Shear Modulus
Hs	.5(h1+h2)+hv
Hs;1	hsh1/(h1+h2)
Hs;1	hsh2/(h1+h2)
Is	$h1(hs;2)^2+h2(hs;1)^2$
a	Minimum Pane Width
Г	1/(1+9.6(Eishv/(G(ahs) ²))
hef;w	$\sqrt[3]{((h1)^3+(h2)^3+12\Gamma ls)}$
h1;ef; σ	$\sqrt{((hef;w)^{3}/(h1+2\Gamma hs;2))}$
h2;ef;σ	$\sqrt{((hef;w)^3/(h2+2\Gamma hs;1))}$

1/4" Laminated Glass: lami+0.06"+lami, (.102" glass + 0.06" interlayer + .102" glass)

Lan	ninate	d Glass E	ffectiv	e Th	ickness	1	
h1		h2	hv	-	E	g	
	0.102	0.102	2	0.06	10400000	14	0
hs		hs;1	hs;2		Is		
	0.162	0.08	1	0.081	0.001338444		
a		Г	hef;w		h1;ef; o	h2;ef;σ	
	36	0.372604684	4 0.2008	887242	0.223453105	0.22345310	5

5/16" Laminated Glass:

1/8"+0.06"+1/8", (.115" glass + 0.06" interlayer + .115" glass)

Lan	ninated (Glass Ef	fectiv	e Thi	ick	ness]	
h1	h2		hv		Е		g	
	0.115	0.115		0.06		10400000		140
hs	hs;	1	hs;2		Is			
	0.175	0.0875		0.0875	0.0	01760938		
a	Г		hef;w		h1;	ef; σ	h2;ef;σ	
	36 0.3	345016429	0.217	80446	0.2	42724016	0.242724	1016

7/16" Laminated Glass: 3/16"+0.06"+3/16", (.180" glass + 0.06" interlayer + .180" glass)

Lan	ninate	d Gla	ss Ef	fective	e Th	ick	ness		
h1		h2		hv		Е		g	
Ĵ.	0.18		0.18		0.06		10400000		140
hs		hs;1		hs;2		Is			
	0.24		0.12		0.12		0.005184		
a		Г		hef;w		h1;	ef; σ	h2;ef;σ	
	36	0.2517	98561	0.3012	09506	0.3	37137597	0.337137	7597

Guard Infill Design

System:	ARS				
Infill Description:					
Laminated	Tempered Glass				

Allowable Live Load Stress (psi)	6000
Allowable Wind Load Stress (psi)	10600
Young's modulus (psi)	10400000

Load Cases:

50# Concentrated Load At Mid Span M = 50#*Span/(1ft*4) $\Delta = 50\#*span3/(48EI)$ Max span = min(S*6000psi*4/50 or(48EI/(50*60))^(1/2)) $I=t_{e,w}^{3}$ $S=2t_{e,\sigma}^{2}$

Allowable Spans For 50# Live Load

t _{nom}		t _{e,w} (in)	t _{e,σ} (in)	l (in ⁴)	S (in ³)	Max span (in)
	1/4	0.201	0.223	0.0081206	0.099458	36.76
	5/16	0.218	0.243	0.01036023	0.118098	41.52
	3/8	0.301	0.337	0.0272709	0.227138	67.36

Wind Load

 $M = W/12Span^{2}/8$ $\Delta = 5^{*}W/12^{*}span^{4}/(384EI)$ Max span = min((S*6000psi*8/W)^{1/2} or(384EI/(5*W/12*60))^(1/3))

Allowable Spans With Respect To Wind Loading

	Wi	nd Load (psf)	
t _{nom} (in)	25	50	75
1/4	37.30	29.60	25.86
5/16	40.45	32.11	28.05
3/8	55.85	44.33	38.73

CR LAURENCE ALUMINUM RAIL SYSTEM

2/15/21

DESIGN PROCEDURE AND FIGURES

For most projects, the required rail height, connection detail and wind loading are dictated for the job. The design figures below will assist the specifier determine the maximum post spacing that can be used for the given rail height, connection detail and wind loading. As the specifier goes through the procedure and selects components, the maximum post spacing the particular component will allow can be determined. Generally, this ESR considers a max fence height of 60" and a max post spacing of 72" although some conditions may go taller. For fence heights or spacings outside the scope of the design figures, a project specific analysis is required.

Step 1: Select infill

The infill will likely be selected by the building architect. All infills considered in this ESR meet guard rail requirements. Note that wind loading may be a significant factor for glass infill. Also, cable infill requires the heavy posts at corners and ends. For glass infill, consult the allowable span charts to determine if the glass thickness and span is OK for the project wind loading and to determine if the bottom and mid rail (if used) is OK for project wind loading. When a mid rail is used, the mid rail wind load tables are more restrictive than the bottom rail tables and will control allowable post spacing. Other infills are OK at the 60" max railing height considered in this ESR.

Step 2: Select anchorage method.

Anchorage method is normally dictated by architectural details for the building. Verify the project specific conditions are compatible with one of the standard anchorage details. Read the max post spacing for the 50plf live load table for the given rail height. Where significant wind loading is present, also consult wind load charts for max post spacing.

Step 3: Select posts.

Posts are selected similarly to the anchorage detail. Use heavy posts at cable corner posts and end posts to resist cable infill loading. Verify the post is compatible with the previously selected anchorage detail. For instance, if the six screw baseplate is used, then the six screw post must also be used. Consult the 50plf live load table for maximum post spacing for the given height and post. Where significant wind loading is present, also consult wind load charts for max post spacing.

Step 4: Select top rail.

This is also primarily an aesthetics consideration and will be dictated by the building architect. Top rails do not limit the post spacing except for the series 200X top rail which limits post spacing to 68" O.C. max. All other top rails are OK at 72" post spacing. Wind load charts are not provided for top rails because in every case they are stronger and stiffer than the bottom rail which receives the same loading.

STEP 1: INFILL

a) Picket infill

Does not restrict allowable post height or spacing

b) Cable infill - (Does not restrict allowable post height or spacing)

Limit post height to 42" above finished floor. Heavy posts required at corners and ends. Does not restrict post spacing.

c) Glass infill

Laminated glass required where a walking surface is below the guard rail. Select the glass thickness from the tables below that meets required allowable span and wind loading requirements. Additionally, check the allowable spans for the bottom rail and mid rail for the specific rail height and wind load. The mid rail will control over the bottom rail when used.

Monolithic glass design tables:

Allowable Spans For 50# Live Load

t _{nom}	t _{min}		l (in⁴)	S (in³)	Max span (in)
	1/4	0.219	0.01050346	0.095922	41.81
	5/16	0.292	0.02489709	0.170528	64.37
	3/8	0.355	0.04473888	0.25205	86.28

Allowable Spans With Respect To Wind Loading

	Wind Load (psf)		
t _{nom} (in)	25	50	75
1/4	40.64	32.25	28.18
5/16	54.18	43.01	37.57
3/8	65.88	52.29	45.68

Laminated glass design tables:

Allowable Spa	ans For 50# LIV	e Load			
t _{nom}	t _{e,w} (in)	t _{e,σ} (in)	l (in ⁴)	S (in ³)	Max span (in)
1/4	0.201	0.223	0.0081206	0.099458	36.76
5/16	0.218	0.243	0.01036023	0.118098	41.52
3/8	0.301	0.337	0.0272709	0.227138	67.36

Allowable Spans For 50# Live Load

Allowable Spans With Respect To Wind Loading

	Wind Load (psf)		
t _{nom} (in)	25	50	75
1/4	37.30	29.60	25.86
5/16	40.45	32.11	28.05
3/8	55.85	44.33	38.73

Bottom rail design table:

Allowable rail span with respect to infill height and wind load is shown in the table below.

		P (psf)		
3		25	50	75
	1.5	103.20	72.97	59.58
	2	89.37	63.19	51.60
	2.5	79.94	56.52	46.15
ft)	3	72.97	51.60	42.13
H	3.5	67.56	47.77	39.00
	4	63.19	44.69	36.49
	4.5	59.58	42.13	34.40
	5	56.52	39.97	32.63

Mid rail design table:

	DEIOW.			
		P (psf)		
		25	50	75
	1.5	99.92	70.65	57.69
	2	86.53	61.19	49.96
	2.5	77.40	54.73	44.69
ft)	3	70.65	49.96	40.79
н (3.5	65.41	46.25	37.77
	4	61.19	43.27	35.33
	4.5	57.69	40.79	33.31
	5	54.73	38.70	31.60

Allowable rail span with respect to infill height and wind load is shown in the table below.

STEP 2: ANCHORAGE METHOD

Allowable post moment and post spacing information given for each anchorage type below. Note some anchorage details include two connections, such as post to baseplate and baseplate to slab. Check allowable post height when subject to 200# concentrated load to determine if the anchorage detail is valid for the rail height. If the detail is valid, then check allowable tributary width with respect to the 50plf live load and wind loads.

Post to baseplate connections:

a) 4 screw 2-3/8" square post screwed to baseplate (includes 135° post) Allowable moment, $M_{a,x} = 10,500$ "# Max post height = 52.5" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	70
42	60
48	52.5
60	42
72	<36"
84	<36"
96	<36"

b) 6 screw 2-3/8" square post screwed to baseplate (includes heavy post, 135° post not used) Allowable post moment, $M_{a,x} = 15,700$ "# Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	62.8
72	52.33333333
84	44.85714286
96	39.25

c) 135° post at corner mixed with 6 screw square posts at intermediates Allowable post moment, $M_{a,x} = 12,600$ "#

Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	63
60	50.4
72	42
84	36
96	<36"

d) 4" square post screwed to baseplate

Allowable post moment, $M_{a,x} = 17,300$ "# Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	69.2
72	57.66666667
84	49.42857143
96	43.25

e) Aluminum stanchion screwed to baseplate

Allowable moment, $M_{a,x} = 12,400$ "# Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	70.85714286
48	62
60	49.6
72	41.33333333
84	<36"
96	<36"

f) Aluminum stanchion welded to baseplate

Allowable moment, $M_{a,x} = 10,500$ "# Max post height = 52" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	70
42	60
48	52.5
60	42
72	<36"
84	<36"
96	<36"

f) Steel stanchion welded to baseplate

Allowable moment, $M_{a,x} = 13,500$ "#

Max post height = 68" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	68
60	54.4
72	45.33333333
84	38.85714286
96	<36"

Baseplate Anchorage Details:

g) 3/8"x4" KH-EZ uncracked concrete and 5x5 baseplate Allowable moment, $M_{a,x} = 13,500$ "# Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	67.5
60	54
72	45
84	38.57142857
96	<36"

h) 3/8"x4" KH-EZ in uncracked concrete and 3x5 baseplate

Allowable moment, $M_{a,x} = 7,130$ "# Max post height = 35" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	71.3
30	57.04
36	47.53333333
42	40.74285714
48	<36"
60	<36"
72	<36"
84	<36"
96	<36"

i) 3/8"x4" KH-EZ in uncracked concrete and 6-1/2x6-1/2" baseplate

Allowable moment, $M_{a,x} = 17,800$ "# Max post height = 84" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	71.2
72	59.33333333
84	50.85714286
96	44.5

j) 3/8"x4" KH-EZ in cracked concrete and 5x5" baseplate Allowable moment, $M_{a,x} = 9,600$ "# Max post height = 48" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	64
42	54.85714286
48	48
60	38.4
72	<36"
84	<36"
96	<36"

k) 3/8"x4" KH-EZ in cracked concrete and 6-1/2x6-1/2" baseplate

Allowable moment, $M_{a,x} = 12,700$ "# Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	63.5
60	50.8
72	42.33333333
84	36.28571429
96	<36"

l) 3/8"x3-3/4" KB-TZ in uncracked concrete and 5x5" baseplate.

Allowable moment, $M_{a,x} = 14,200$ "# Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	71
60	56.8
72	47.33333333
84	40.57142857
96	<36"

m) 3/8"x3-3/4" KB-TZ in uncracked concrete and 3x5" baseplate.

Allowable moment, $M_{a,x} = 7,490$ "# Max post height = 36" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	59.92
36	49.93333333
42	42.8
48	37.45
60	<36"
72	<36"
84	<36"
96	<36"

n) 3/8"x3-3/4" KB-TZ in uncracked concrete and 6-1/2x6-1/2" baseplate.

Allowable moment, $M_{a,x} = 18,800$ "# Max post height = 94" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	72
72	62.66666667
84	53.71428571
96	47

o) 3/8"x3-3/4" KB-TZ in cracked concrete and 5x5" baseplate.

Allowable moment, $M_{a,x} = 11,000$ "# Max post height = 55" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	62.85714286
48	55
60	44
72	36.66666667
84	<36"
96	<36"

p) 3/8"x3-3/4" KB-TZ in cracked concrete and 6-1/2x6-1/2" baseplate.

Allowable moment, $M_{a,x} = 14,500$ "# Max post height = 72" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	58
72	48.33333333
84	41.42857143
96	36.25

q) 3/8" A307 or 304 Lag Screw w/ 4-1/4" penetration and 5x5" baseplate

Optimal lag screw penetration. Allowable moment, $M_{a,x} = 11,400$ "# Max post height = 57" when subject to 200# concentrated load Higher strength connections will require higher strength material or larger diameter.

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	65.14285714
48	57
60	45.6
72	38
84	<36"
96	<36"

r) 3/8" A307 or 304 Lag Screw w/ 3-1/2" penetration and 5x5" baseplate Allowable moment, $M_{a,x} = 9,860$ "# Max post height = 49" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	65.73333333
42	56.34285714
48	49.3
60	39.44
72	<36"
84	<36"
96	<36"

s) 3/8" A307 or 304 Lag Screw w/ 3" penetration and 5x5" baseplate Allowable moment, $M_{a,x} = 8,700$ "# Max post height = 43" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	69.6
36	58
42	49.71428571
48	43.5
60	<36"
72	<36"
84	<36"
96	<36"

t) 3/8" A307 or 304 Lag Screw w/ 4-1/4" penetration and 6-1/2x6-1/2" baseplate

Optimal lag screw penetration. Allowable moment, $M_{a,x} = 16,000$ "# Max post height = 80" when subject to 200# concentrated load Higher strength connections will require higher strength material or larger diameter.

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	72
60	64
72	53.33333333
84	45.71428571
96	40

u) 3/8" A307 or 304 Lag Screw w/ 3-1/2" penetration and 6-1/2x6-1/2" baseplate

Allowable moment, $M_{a,x} = 13,600$ "# Max post height = 68" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	68
60	54.4
72	45.33333333
84	38.85714286
96	<36"

v) 3/8" A307 or 304 Lag Screw w/ 3" penetration and 6-1/2x6-1/2" baseplate

Allowable moment, $M_{a,x} = 11,900$ "# Max post height = 59" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	68
48	59.5
60	47.6
72	39.66666667
84	<36"
96	<36"

Core Mount Details

w) Post set in 4" Deep Core Mount, 3-5/8" edge distance measured from center of post Allowable moment, $M_{a,x} = 12,600$ "# Max post height = 60" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	72
48	63
60	50.4
72	42
84	36
96	<36"

x) Stanchion set in 4" Deep Core Mount, 3-5/8" edge distance measured from center of post Allowable moment, $M_{a,x} = 11,400$ "# Max post height = 57" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	65.14285714
48	57
60	45.6
72	38
84	<36"
96	<36"

Fascia Mount Details

y) Fascia Bracket To Wood, 3-3/8" lag Screw Penetration Top lag screws located 2" below floor. Allowable moment, $M_{a,x} = 10,600$ "# (measured at floor) Max post height = 53" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	70.66666667
42	60.57142857
48	53
60	42.4
72	<36"
84	<36"
96	<36"

z) Fascia Bracket to Concrete, Uncracked Concrete

Allowable moment, $M_{a,x} = 11,300$ "# (measured at floor) Max post height = 56.5" when subject to 200# concentrated load

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	72
36	72
42	64.57142857
48	56.5
60	45.2
72	37.66666667
84	<36"
96	<36"

aa) Fascia Bracket to Concrete, Cracked Concrete

Allowable moment, $M_{a,x} = 8,000$ "# (measured at floor) Max post height = 40" when subject to 200# concentrated load (42" allowed when there are at least 3 posts with a continuous top rail and spacing 48" on center max)

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	64
36	53.33333333
42	45.71428571
48	40
60	<36"
72	<36"
84	<36"
96	<36"

ab) Post Directly Fascia Mounted W/ 3/8" Lag Screws

Allowable moment, $M_{a,x} = 7,800$ "# (measured at floor) Max post height = 39" when subject to 200# concentrated load (42" allowed when there are at least 3 posts with a continuous top rail and spacing 48" on center max)

50plf uniform load along top rail

M=50plf/12*TW*H Hmax = Ma/(TW*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Allowable Post Spacing (in)
24	72
30	62.4
36	52
42	44.57142857
48	39
60	<36"
72	<36"
84	<36"
96	<36"

ac) Post Directly Fascia Mounted W/ 3/8" Carriage Bolts

Allowable moment, $M_{a,x} = 17,400$ "# (measured at floor) Handles top rail live loading at 60" tall with 66" post spacing or 54" tall with 72" post spacing.

Allowable post height with respect to post spacing:

Tributary Width (in)	Max Height (in)
12	348
24	174
36	116
42	99.42857143
48	87
54	77.33333333
60	69.6
66	63.27272727
72	58

STEP 3: POSTS

Check allowable post spacing for selected posts with regard to the 50plf top rail live load and the applicable wind loading. All posts may be used at 60" tall.

4 screw 2-3/8" post

May be used at 60" tall when spacing is limited to 66".

Spacing may be increased to 72" for post height 57" or less.

200# concentrated load at top of post

 $M = 200 \#^{*}H$ $Hmax = Ma/200 \# <(\Delta a^{*}3EI/200 \#)^{(1/3)}$ Hmax 85.5 Δ at H=42" 0.56145775

50plf uniform load along top rail

M=50plf/12*TW*HTWmax = Ma/(H*50plf/12) < $\Delta a*3El/(H^3*50plf/12)$

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
36	72
42	72
45	72
48	72
60	68.4
72	57
84	48.85714286
96	42.75

6 screw 2-3/8" post

200# concentrated load at top of post

 $M = 200\#^{*}H$ $Hmax = Ma/200\# < (\Delta a^{*}3EI/200\#)^{(1/3)}$ Hmax >96" $\Delta at H=42" \quad 0.49050121$

50plf uniform load along top rail

M=50plf/12*TW*HTWmax = Ma/(H*50plf/12) < $\Delta a*3El/(H^3*50plf/12)$

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
36	72
42	72
45	72
48	72
60	72
72	65
84	55.71428571
96	48.75

6 screw 2-3/8" heavy post

200#	concentrated	load	at	top o	f post
------	--------------	------	----	-------	--------

M = 200#*H $Hmax = Ma/200\# < (\Delta a*3EI/200\#)^{(1/3)}$ Hmax 120 $\Delta at H=42" 0.38811881$

50plf uniform load along top rail

M=50plf/12*TW*HTWmax = Ma/(H*50plf/12) < $\Delta a*3El/(H^3*50plf/12)$

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
42	72
48	72
60	72
72	72
84	72
96	65.5
108	58.22222222
120	52.4

4" post

Designed for H/48 deflection criteria.

Load Cases:

 200# concentrated load at top of post

 $M = 200\#^*H$
 $Hmax = Ma/200\# < (\Delta a^*3EI/200\#)^{(1/3)}$

 Hmax
 131.513998

 Δ at H=42"
 0.089239

50plf uniform load along top rail

M=50plf/12*TW*HTWmax = Ma/(H*50plf/12) < $\Delta a*3EI/(H^3*50plf/12)$

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
42	72
48	72
60	72
72	72
84	72
120	57.65416667
132	47.64807163
144	40.03761574

135° post

When 135° degree posts are used along with any of the other 2-3/8" posts, the intermediate posts limit the allowable post spacing.

Trim-Line Post

Loon concentrated roud at top of post

M = 200#*H $Hmax = Ma/200# <(\Delta a*3EI/200#)^{(1/3)}$ Hmax 52 $\Delta at H=42" 0.93326279$

50plf uniform load along top rail

M=50plf/12*TW*H TWmax = Ma/(H*50plf/12) < Δa*3El/(H³*50plf/12)

Allowable post height with respect to post spacing:

Post Height (in)	Max Spacing (in)
12	72
24	72
30	72
36	69.33333333
42	59.42857143
45	55.46666667
48	52
52	48

STEP 4: TOP RAIL

When pickets or glass infill attach to top rail:

Series 200X top rail max post spacing = 68" All other top rails, max post spacing = 72"

When pickets or glass infill do <u>not</u> attach to top rail:

Examples, when a mid rail is used or cable infill without a picket spreader in the middle. Allowable post spacing according to the table below:

Top Rail Allowable Spans:			
Top Rail		Ma (in-lbs)	Allowable Span (in)
	100	3750	72
	200	2640	52.8
200X		1790	35.8
	300	6430	72
	320	3000	60
	350	4300	72
	400	5130	72
	500	2600	52